Solution behaviour in a class of difference–differential equations

Difference equations with piecewise continuous nonlinearities and their singular perturbations, first order neutral type delay differential equations with small parameters, are considered. Solutions of the difference equations are shown to be asymptotically periodic with period-adding bifurcations a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 1998-02, Vol.57 (1), p.37-48
Hauptverfasser: Fedorenko, A.D., Fedorenko, V.V., Ivanov, A.F., Sharkovsky, A.N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 48
container_issue 1
container_start_page 37
container_title Bulletin of the Australian Mathematical Society
container_volume 57
creator Fedorenko, A.D.
Fedorenko, V.V.
Ivanov, A.F.
Sharkovsky, A.N.
description Difference equations with piecewise continuous nonlinearities and their singular perturbations, first order neutral type delay differential equations with small parameters, are considered. Solutions of the difference equations are shown to be asymptotically periodic with period-adding bifurcations and bifurcations determined by Farey's rule taking place for periods and types of solutions. Solutions of the singularly perturbed delay differential equations are considered and compared with solutions of the difference equations within finite time intervals. The comparison is based on a continuous dependence of solutions on the singular parameter.
doi_str_mv 10.1017/S0004972700031397
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0004972700031397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972700031397</cupid><sourcerecordid>10_1017_S0004972700031397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-666ba940050da1d54f741a17b853c15ffaf17900d7e3a3220430a73bbdd235363</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHa-QMDOxHazhEJbRCV-CmtrktjgkiZgJwh23IEbchIStbBBYjV6evPN0zxCDjk74oyr4wVjLElVrLoJHFK1RQZcCRFxCbBNBr0d9f4u2Qth2Skh4tGAnC3qsm1cXdHMPOKrq1tPXUWR5iWGQGtLC2et8abKzdfH549oHJbUvLTYo2Gf7FgsgznYzCG5n5zfjWfR_Gp6MT6ZRznIURNJKTNME8YEK5AXIrEq4chVNhKQc2EtWq5SxgplACGOWQIMFWRZUcQgQMKQ8PXd3NcheGP1s3cr9O-aM93XoP_U0DHRmnGhMW-_APonLRUooeX0Rk8Ws9tLeT3Tp90-bDJwlXlXPBi97Eqpur_-SfkG_hJuyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solution behaviour in a class of difference–differential equations</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Fedorenko, A.D. ; Fedorenko, V.V. ; Ivanov, A.F. ; Sharkovsky, A.N.</creator><creatorcontrib>Fedorenko, A.D. ; Fedorenko, V.V. ; Ivanov, A.F. ; Sharkovsky, A.N.</creatorcontrib><description>Difference equations with piecewise continuous nonlinearities and their singular perturbations, first order neutral type delay differential equations with small parameters, are considered. Solutions of the difference equations are shown to be asymptotically periodic with period-adding bifurcations and bifurcations determined by Farey's rule taking place for periods and types of solutions. Solutions of the singularly perturbed delay differential equations are considered and compared with solutions of the difference equations within finite time intervals. The comparison is based on a continuous dependence of solutions on the singular parameter.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972700031397</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Bulletin of the Australian Mathematical Society, 1998-02, Vol.57 (1), p.37-48</ispartof><rights>Copyright © Australian Mathematical Society 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-666ba940050da1d54f741a17b853c15ffaf17900d7e3a3220430a73bbdd235363</citedby><cites>FETCH-LOGICAL-c368t-666ba940050da1d54f741a17b853c15ffaf17900d7e3a3220430a73bbdd235363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972700031397/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Fedorenko, A.D.</creatorcontrib><creatorcontrib>Fedorenko, V.V.</creatorcontrib><creatorcontrib>Ivanov, A.F.</creatorcontrib><creatorcontrib>Sharkovsky, A.N.</creatorcontrib><title>Solution behaviour in a class of difference–differential equations</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Austral. Math. Soc</addtitle><description>Difference equations with piecewise continuous nonlinearities and their singular perturbations, first order neutral type delay differential equations with small parameters, are considered. Solutions of the difference equations are shown to be asymptotically periodic with period-adding bifurcations and bifurcations determined by Farey's rule taking place for periods and types of solutions. Solutions of the singularly perturbed delay differential equations are considered and compared with solutions of the difference equations within finite time intervals. The comparison is based on a continuous dependence of solutions on the singular parameter.</description><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHa-QMDOxHazhEJbRCV-CmtrktjgkiZgJwh23IEbchIStbBBYjV6evPN0zxCDjk74oyr4wVjLElVrLoJHFK1RQZcCRFxCbBNBr0d9f4u2Qth2Skh4tGAnC3qsm1cXdHMPOKrq1tPXUWR5iWGQGtLC2et8abKzdfH549oHJbUvLTYo2Gf7FgsgznYzCG5n5zfjWfR_Gp6MT6ZRznIURNJKTNME8YEK5AXIrEq4chVNhKQc2EtWq5SxgplACGOWQIMFWRZUcQgQMKQ8PXd3NcheGP1s3cr9O-aM93XoP_U0DHRmnGhMW-_APonLRUooeX0Rk8Ws9tLeT3Tp90-bDJwlXlXPBi97Eqpur_-SfkG_hJuyg</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Fedorenko, A.D.</creator><creator>Fedorenko, V.V.</creator><creator>Ivanov, A.F.</creator><creator>Sharkovsky, A.N.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980201</creationdate><title>Solution behaviour in a class of difference–differential equations</title><author>Fedorenko, A.D. ; Fedorenko, V.V. ; Ivanov, A.F. ; Sharkovsky, A.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-666ba940050da1d54f741a17b853c15ffaf17900d7e3a3220430a73bbdd235363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedorenko, A.D.</creatorcontrib><creatorcontrib>Fedorenko, V.V.</creatorcontrib><creatorcontrib>Ivanov, A.F.</creatorcontrib><creatorcontrib>Sharkovsky, A.N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedorenko, A.D.</au><au>Fedorenko, V.V.</au><au>Ivanov, A.F.</au><au>Sharkovsky, A.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution behaviour in a class of difference–differential equations</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Austral. Math. Soc</addtitle><date>1998-02-01</date><risdate>1998</risdate><volume>57</volume><issue>1</issue><spage>37</spage><epage>48</epage><pages>37-48</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Difference equations with piecewise continuous nonlinearities and their singular perturbations, first order neutral type delay differential equations with small parameters, are considered. Solutions of the difference equations are shown to be asymptotically periodic with period-adding bifurcations and bifurcations determined by Farey's rule taking place for periods and types of solutions. Solutions of the singularly perturbed delay differential equations are considered and compared with solutions of the difference equations within finite time intervals. The comparison is based on a continuous dependence of solutions on the singular parameter.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972700031397</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 1998-02, Vol.57 (1), p.37-48
issn 0004-9727
1755-1633
language eng
recordid cdi_crossref_primary_10_1017_S0004972700031397
source EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete
title Solution behaviour in a class of difference–differential equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20behaviour%20in%20a%20class%20of%20difference%E2%80%93differential%20equations&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=Fedorenko,%20A.D.&rft.date=1998-02-01&rft.volume=57&rft.issue=1&rft.spage=37&rft.epage=48&rft.pages=37-48&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972700031397&rft_dat=%3Ccambridge_cross%3E10_1017_S0004972700031397%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0004972700031397&rfr_iscdi=true