Solution behaviour in a class of difference–differential equations
Difference equations with piecewise continuous nonlinearities and their singular perturbations, first order neutral type delay differential equations with small parameters, are considered. Solutions of the difference equations are shown to be asymptotically periodic with period-adding bifurcations a...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 1998-02, Vol.57 (1), p.37-48 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 48 |
---|---|
container_issue | 1 |
container_start_page | 37 |
container_title | Bulletin of the Australian Mathematical Society |
container_volume | 57 |
creator | Fedorenko, A.D. Fedorenko, V.V. Ivanov, A.F. Sharkovsky, A.N. |
description | Difference equations with piecewise continuous nonlinearities and their singular perturbations, first order neutral type delay differential equations with small parameters, are considered. Solutions of the difference equations are shown to be asymptotically periodic with period-adding bifurcations and bifurcations determined by Farey's rule taking place for periods and types of solutions. Solutions of the singularly perturbed delay differential equations are considered and compared with solutions of the difference equations within finite time intervals. The comparison is based on a continuous dependence of solutions on the singular parameter. |
doi_str_mv | 10.1017/S0004972700031397 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0004972700031397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972700031397</cupid><sourcerecordid>10_1017_S0004972700031397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-666ba940050da1d54f741a17b853c15ffaf17900d7e3a3220430a73bbdd235363</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EEqVwAHa-QMDOxHazhEJbRCV-CmtrktjgkiZgJwh23IEbchIStbBBYjV6evPN0zxCDjk74oyr4wVjLElVrLoJHFK1RQZcCRFxCbBNBr0d9f4u2Qth2Skh4tGAnC3qsm1cXdHMPOKrq1tPXUWR5iWGQGtLC2et8abKzdfH549oHJbUvLTYo2Gf7FgsgznYzCG5n5zfjWfR_Gp6MT6ZRznIURNJKTNME8YEK5AXIrEq4chVNhKQc2EtWq5SxgplACGOWQIMFWRZUcQgQMKQ8PXd3NcheGP1s3cr9O-aM93XoP_U0DHRmnGhMW-_APonLRUooeX0Rk8Ws9tLeT3Tp90-bDJwlXlXPBi97Eqpur_-SfkG_hJuyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Solution behaviour in a class of difference–differential equations</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Cambridge University Press Journals Complete</source><creator>Fedorenko, A.D. ; Fedorenko, V.V. ; Ivanov, A.F. ; Sharkovsky, A.N.</creator><creatorcontrib>Fedorenko, A.D. ; Fedorenko, V.V. ; Ivanov, A.F. ; Sharkovsky, A.N.</creatorcontrib><description>Difference equations with piecewise continuous nonlinearities and their singular perturbations, first order neutral type delay differential equations with small parameters, are considered. Solutions of the difference equations are shown to be asymptotically periodic with period-adding bifurcations and bifurcations determined by Farey's rule taking place for periods and types of solutions. Solutions of the singularly perturbed delay differential equations are considered and compared with solutions of the difference equations within finite time intervals. The comparison is based on a continuous dependence of solutions on the singular parameter.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972700031397</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Bulletin of the Australian Mathematical Society, 1998-02, Vol.57 (1), p.37-48</ispartof><rights>Copyright © Australian Mathematical Society 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-666ba940050da1d54f741a17b853c15ffaf17900d7e3a3220430a73bbdd235363</citedby><cites>FETCH-LOGICAL-c368t-666ba940050da1d54f741a17b853c15ffaf17900d7e3a3220430a73bbdd235363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972700031397/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27907,27908,55611</link.rule.ids></links><search><creatorcontrib>Fedorenko, A.D.</creatorcontrib><creatorcontrib>Fedorenko, V.V.</creatorcontrib><creatorcontrib>Ivanov, A.F.</creatorcontrib><creatorcontrib>Sharkovsky, A.N.</creatorcontrib><title>Solution behaviour in a class of difference–differential equations</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Austral. Math. Soc</addtitle><description>Difference equations with piecewise continuous nonlinearities and their singular perturbations, first order neutral type delay differential equations with small parameters, are considered. Solutions of the difference equations are shown to be asymptotically periodic with period-adding bifurcations and bifurcations determined by Farey's rule taking place for periods and types of solutions. Solutions of the singularly perturbed delay differential equations are considered and compared with solutions of the difference equations within finite time intervals. The comparison is based on a continuous dependence of solutions on the singular parameter.</description><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EEqVwAHa-QMDOxHazhEJbRCV-CmtrktjgkiZgJwh23IEbchIStbBBYjV6evPN0zxCDjk74oyr4wVjLElVrLoJHFK1RQZcCRFxCbBNBr0d9f4u2Qth2Skh4tGAnC3qsm1cXdHMPOKrq1tPXUWR5iWGQGtLC2et8abKzdfH549oHJbUvLTYo2Gf7FgsgznYzCG5n5zfjWfR_Gp6MT6ZRznIURNJKTNME8YEK5AXIrEq4chVNhKQc2EtWq5SxgplACGOWQIMFWRZUcQgQMKQ8PXd3NcheGP1s3cr9O-aM93XoP_U0DHRmnGhMW-_APonLRUooeX0Rk8Ws9tLeT3Tp90-bDJwlXlXPBi97Eqpur_-SfkG_hJuyg</recordid><startdate>19980201</startdate><enddate>19980201</enddate><creator>Fedorenko, A.D.</creator><creator>Fedorenko, V.V.</creator><creator>Ivanov, A.F.</creator><creator>Sharkovsky, A.N.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19980201</creationdate><title>Solution behaviour in a class of difference–differential equations</title><author>Fedorenko, A.D. ; Fedorenko, V.V. ; Ivanov, A.F. ; Sharkovsky, A.N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-666ba940050da1d54f741a17b853c15ffaf17900d7e3a3220430a73bbdd235363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedorenko, A.D.</creatorcontrib><creatorcontrib>Fedorenko, V.V.</creatorcontrib><creatorcontrib>Ivanov, A.F.</creatorcontrib><creatorcontrib>Sharkovsky, A.N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedorenko, A.D.</au><au>Fedorenko, V.V.</au><au>Ivanov, A.F.</au><au>Sharkovsky, A.N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution behaviour in a class of difference–differential equations</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Austral. Math. Soc</addtitle><date>1998-02-01</date><risdate>1998</risdate><volume>57</volume><issue>1</issue><spage>37</spage><epage>48</epage><pages>37-48</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>Difference equations with piecewise continuous nonlinearities and their singular perturbations, first order neutral type delay differential equations with small parameters, are considered. Solutions of the difference equations are shown to be asymptotically periodic with period-adding bifurcations and bifurcations determined by Farey's rule taking place for periods and types of solutions. Solutions of the singularly perturbed delay differential equations are considered and compared with solutions of the difference equations within finite time intervals. The comparison is based on a continuous dependence of solutions on the singular parameter.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972700031397</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-9727 |
ispartof | Bulletin of the Australian Mathematical Society, 1998-02, Vol.57 (1), p.37-48 |
issn | 0004-9727 1755-1633 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0004972700031397 |
source | EZB-FREE-00999 freely available EZB journals; Cambridge University Press Journals Complete |
title | Solution behaviour in a class of difference–differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T00%3A00%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20behaviour%20in%20a%20class%20of%20difference%E2%80%93differential%20equations&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=Fedorenko,%20A.D.&rft.date=1998-02-01&rft.volume=57&rft.issue=1&rft.spage=37&rft.epage=48&rft.pages=37-48&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972700031397&rft_dat=%3Ccambridge_cross%3E10_1017_S0004972700031397%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0004972700031397&rfr_iscdi=true |