On a sufficient optimality condition over convex feasible regions

In this note a sufficient optimality condition is established for nonlinear programming problems over arbitrary cone domains. A Kuhn-Tucker type sufficient condition is established if the programming problem has a pseudoconvex objective function and a convex feasible region.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 1977-04, Vol.16 (2), p.199-202
Hauptverfasser: Alders, C.D., Sposito, V.A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 202
container_issue 2
container_start_page 199
container_title Bulletin of the Australian Mathematical Society
container_volume 16
creator Alders, C.D.
Sposito, V.A.
description In this note a sufficient optimality condition is established for nonlinear programming problems over arbitrary cone domains. A Kuhn-Tucker type sufficient condition is established if the programming problem has a pseudoconvex objective function and a convex feasible region.
doi_str_mv 10.1017/S0004972700023194
format Article
fullrecord <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0004972700023194</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0004972700023194</cupid><sourcerecordid>10_1017_S0004972700023194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2374-8d0502ea3705fff09c3fc95f12bf7ebf39e2d080ee3d56f04ca930dc7bb2d69a3</originalsourceid><addsrcrecordid>eNp9UMFOAjEUbIwmIvoB3vYHVl_b7ZYeCSqYYIiiFy9Nt_tKirBL2oXA37MbiBcTT5PJvHnz3hByT-GBApWPcwDIlGSyRcapyi5Ij0ohUppzfkl6nZx2-jW5iXHZMiHYoEeGsyoxSdw6563HqknqTePXZuWbQ2LrqvSNr6uk3mHo6A73iUMTfbHCJOCi1eItuXJmFfHujH3y9fL8OZqk09n4dTScppZxmaWDEgQwNFyCcM6BstxZJRxlhZNYOK6QlTAARF6K3EFmjeJQWlkUrMyV4X1CT3ttqGMM6PQmtJeGg6aguw70nw5aT3ry-Njg_tdgwo_OJZdC5-N3_QRv8lt9zPWknefnDLMugi8XqJf1NlTtX_-kHAFJRm35</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a sufficient optimality condition over convex feasible regions</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Cambridge University Press Journals Complete</source><creator>Alders, C.D. ; Sposito, V.A.</creator><creatorcontrib>Alders, C.D. ; Sposito, V.A.</creatorcontrib><description>In this note a sufficient optimality condition is established for nonlinear programming problems over arbitrary cone domains. A Kuhn-Tucker type sufficient condition is established if the programming problem has a pseudoconvex objective function and a convex feasible region.</description><identifier>ISSN: 0004-9727</identifier><identifier>EISSN: 1755-1633</identifier><identifier>DOI: 10.1017/S0004972700023194</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><ispartof>Bulletin of the Australian Mathematical Society, 1977-04, Vol.16 (2), p.199-202</ispartof><rights>Copyright © Australian Mathematical Society 1977</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2374-8d0502ea3705fff09c3fc95f12bf7ebf39e2d080ee3d56f04ca930dc7bb2d69a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0004972700023194/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,55609</link.rule.ids></links><search><creatorcontrib>Alders, C.D.</creatorcontrib><creatorcontrib>Sposito, V.A.</creatorcontrib><title>On a sufficient optimality condition over convex feasible regions</title><title>Bulletin of the Australian Mathematical Society</title><addtitle>Bull. Austral. Math. Soc</addtitle><description>In this note a sufficient optimality condition is established for nonlinear programming problems over arbitrary cone domains. A Kuhn-Tucker type sufficient condition is established if the programming problem has a pseudoconvex objective function and a convex feasible region.</description><issn>0004-9727</issn><issn>1755-1633</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1977</creationdate><recordtype>article</recordtype><recordid>eNp9UMFOAjEUbIwmIvoB3vYHVl_b7ZYeCSqYYIiiFy9Nt_tKirBL2oXA37MbiBcTT5PJvHnz3hByT-GBApWPcwDIlGSyRcapyi5Ij0ohUppzfkl6nZx2-jW5iXHZMiHYoEeGsyoxSdw6563HqknqTePXZuWbQ2LrqvSNr6uk3mHo6A73iUMTfbHCJOCi1eItuXJmFfHujH3y9fL8OZqk09n4dTScppZxmaWDEgQwNFyCcM6BstxZJRxlhZNYOK6QlTAARF6K3EFmjeJQWlkUrMyV4X1CT3ttqGMM6PQmtJeGg6aguw70nw5aT3ry-Njg_tdgwo_OJZdC5-N3_QRv8lt9zPWknefnDLMugi8XqJf1NlTtX_-kHAFJRm35</recordid><startdate>197704</startdate><enddate>197704</enddate><creator>Alders, C.D.</creator><creator>Sposito, V.A.</creator><general>Cambridge University Press</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197704</creationdate><title>On a sufficient optimality condition over convex feasible regions</title><author>Alders, C.D. ; Sposito, V.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2374-8d0502ea3705fff09c3fc95f12bf7ebf39e2d080ee3d56f04ca930dc7bb2d69a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1977</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alders, C.D.</creatorcontrib><creatorcontrib>Sposito, V.A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Bulletin of the Australian Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alders, C.D.</au><au>Sposito, V.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a sufficient optimality condition over convex feasible regions</atitle><jtitle>Bulletin of the Australian Mathematical Society</jtitle><addtitle>Bull. Austral. Math. Soc</addtitle><date>1977-04</date><risdate>1977</risdate><volume>16</volume><issue>2</issue><spage>199</spage><epage>202</epage><pages>199-202</pages><issn>0004-9727</issn><eissn>1755-1633</eissn><abstract>In this note a sufficient optimality condition is established for nonlinear programming problems over arbitrary cone domains. A Kuhn-Tucker type sufficient condition is established if the programming problem has a pseudoconvex objective function and a convex feasible region.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0004972700023194</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-9727
ispartof Bulletin of the Australian Mathematical Society, 1977-04, Vol.16 (2), p.199-202
issn 0004-9727
1755-1633
language eng
recordid cdi_crossref_primary_10_1017_S0004972700023194
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Cambridge University Press Journals Complete
title On a sufficient optimality condition over convex feasible regions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A31%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20sufficient%20optimality%20condition%20over%20convex%20feasible%20regions&rft.jtitle=Bulletin%20of%20the%20Australian%20Mathematical%20Society&rft.au=Alders,%20C.D.&rft.date=1977-04&rft.volume=16&rft.issue=2&rft.spage=199&rft.epage=202&rft.pages=199-202&rft.issn=0004-9727&rft.eissn=1755-1633&rft_id=info:doi/10.1017/S0004972700023194&rft_dat=%3Ccambridge_cross%3E10_1017_S0004972700023194%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0004972700023194&rfr_iscdi=true