Regularized Regression Can Reintroduce Backdoor Confounding: The Case of Mass Polarization

Regularization can improve statistical estimates made with highly correlated data. However, any regularization procedure embeds assumptions about the data generating process that can have counterintuitive consequences when those assumptions are untenable. We show that rather than simply shrinking es...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American political science review 2024-10, p.1-9
Hauptverfasser: MELLON, JONATHAN, PROSSER, CHRISTOPHER
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title The American political science review
container_volume
creator MELLON, JONATHAN
PROSSER, CHRISTOPHER
description Regularization can improve statistical estimates made with highly correlated data. However, any regularization procedure embeds assumptions about the data generating process that can have counterintuitive consequences when those assumptions are untenable. We show that rather than simply shrinking estimates, regularization can reopen backdoor causal paths, inflating the estimates of some effects, and in the wrong circumstances, even reversing their direction. Recently, Cavari and Freedman (2023), argued that declining cooperation rates in surveys have inflated measures of mass polarization. We show that this finding is driven by large penalty terms in their regularized regressions, which leads to the estimates being confounded with time. Alternative methods do not show a clear positive or negative effect of declining cooperation on estimated levels of mass polarization.
doi_str_mv 10.1017/S0003055424000935
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0003055424000935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0003055424000935</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-4c2a91daaeacf29fe08a4e680bec67cecae2be54e8f06a096b76f9fa75c50d953</originalsourceid><addsrcrecordid>eNplkEFPhDAUhBujibj6A7z1D6CvQIF6U6KryRqNrhcv5NG-ruhKTQsH_fUW9eZpZjKT7zCMHQs4ESCq00cAyEHKIiuiU7ncYYmQeZVKVeS7LJnrdO732UEIrzGCgDphzw-0mbbo-y8yPHpPIfRu4A0OMfbD6J2ZNPEL1G_GOc8bN1g3DaYfNmd8_UJxGYg7y28xBH7vflg4RsYh27O4DXT0pwv2dHW5bq7T1d3ypjlfpVpUMKaFzlAJg0iobaYsQY0FlTV0pMtKk0bKOpIF1RZKBFV2VWmVxUpqCUbJfMHEL1d7F4In2374_h39Zyugnc9p_52TfwOjsFj4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Regularized Regression Can Reintroduce Backdoor Confounding: The Case of Mass Polarization</title><source>Cambridge University Press Journals Complete</source><creator>MELLON, JONATHAN ; PROSSER, CHRISTOPHER</creator><creatorcontrib>MELLON, JONATHAN ; PROSSER, CHRISTOPHER</creatorcontrib><description>Regularization can improve statistical estimates made with highly correlated data. However, any regularization procedure embeds assumptions about the data generating process that can have counterintuitive consequences when those assumptions are untenable. We show that rather than simply shrinking estimates, regularization can reopen backdoor causal paths, inflating the estimates of some effects, and in the wrong circumstances, even reversing their direction. Recently, Cavari and Freedman (2023), argued that declining cooperation rates in surveys have inflated measures of mass polarization. We show that this finding is driven by large penalty terms in their regularized regressions, which leads to the estimates being confounded with time. Alternative methods do not show a clear positive or negative effect of declining cooperation on estimated levels of mass polarization.</description><identifier>ISSN: 0003-0554</identifier><identifier>EISSN: 1537-5943</identifier><identifier>DOI: 10.1017/S0003055424000935</identifier><language>eng</language><ispartof>The American political science review, 2024-10, p.1-9</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-4c2a91daaeacf29fe08a4e680bec67cecae2be54e8f06a096b76f9fa75c50d953</cites><orcidid>0000-0001-6754-203X ; 0000-0002-2992-8190</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>MELLON, JONATHAN</creatorcontrib><creatorcontrib>PROSSER, CHRISTOPHER</creatorcontrib><title>Regularized Regression Can Reintroduce Backdoor Confounding: The Case of Mass Polarization</title><title>The American political science review</title><description>Regularization can improve statistical estimates made with highly correlated data. However, any regularization procedure embeds assumptions about the data generating process that can have counterintuitive consequences when those assumptions are untenable. We show that rather than simply shrinking estimates, regularization can reopen backdoor causal paths, inflating the estimates of some effects, and in the wrong circumstances, even reversing their direction. Recently, Cavari and Freedman (2023), argued that declining cooperation rates in surveys have inflated measures of mass polarization. We show that this finding is driven by large penalty terms in their regularized regressions, which leads to the estimates being confounded with time. Alternative methods do not show a clear positive or negative effect of declining cooperation on estimated levels of mass polarization.</description><issn>0003-0554</issn><issn>1537-5943</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNplkEFPhDAUhBujibj6A7z1D6CvQIF6U6KryRqNrhcv5NG-ruhKTQsH_fUW9eZpZjKT7zCMHQs4ESCq00cAyEHKIiuiU7ncYYmQeZVKVeS7LJnrdO732UEIrzGCgDphzw-0mbbo-y8yPHpPIfRu4A0OMfbD6J2ZNPEL1G_GOc8bN1g3DaYfNmd8_UJxGYg7y28xBH7vflg4RsYh27O4DXT0pwv2dHW5bq7T1d3ypjlfpVpUMKaFzlAJg0iobaYsQY0FlTV0pMtKk0bKOpIF1RZKBFV2VWmVxUpqCUbJfMHEL1d7F4In2374_h39Zyugnc9p_52TfwOjsFj4</recordid><startdate>20241031</startdate><enddate>20241031</enddate><creator>MELLON, JONATHAN</creator><creator>PROSSER, CHRISTOPHER</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6754-203X</orcidid><orcidid>https://orcid.org/0000-0002-2992-8190</orcidid></search><sort><creationdate>20241031</creationdate><title>Regularized Regression Can Reintroduce Backdoor Confounding: The Case of Mass Polarization</title><author>MELLON, JONATHAN ; PROSSER, CHRISTOPHER</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-4c2a91daaeacf29fe08a4e680bec67cecae2be54e8f06a096b76f9fa75c50d953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>MELLON, JONATHAN</creatorcontrib><creatorcontrib>PROSSER, CHRISTOPHER</creatorcontrib><collection>CrossRef</collection><jtitle>The American political science review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>MELLON, JONATHAN</au><au>PROSSER, CHRISTOPHER</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized Regression Can Reintroduce Backdoor Confounding: The Case of Mass Polarization</atitle><jtitle>The American political science review</jtitle><date>2024-10-31</date><risdate>2024</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>0003-0554</issn><eissn>1537-5943</eissn><abstract>Regularization can improve statistical estimates made with highly correlated data. However, any regularization procedure embeds assumptions about the data generating process that can have counterintuitive consequences when those assumptions are untenable. We show that rather than simply shrinking estimates, regularization can reopen backdoor causal paths, inflating the estimates of some effects, and in the wrong circumstances, even reversing their direction. Recently, Cavari and Freedman (2023), argued that declining cooperation rates in surveys have inflated measures of mass polarization. We show that this finding is driven by large penalty terms in their regularized regressions, which leads to the estimates being confounded with time. Alternative methods do not show a clear positive or negative effect of declining cooperation on estimated levels of mass polarization.</abstract><doi>10.1017/S0003055424000935</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6754-203X</orcidid><orcidid>https://orcid.org/0000-0002-2992-8190</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-0554
ispartof The American political science review, 2024-10, p.1-9
issn 0003-0554
1537-5943
language eng
recordid cdi_crossref_primary_10_1017_S0003055424000935
source Cambridge University Press Journals Complete
title Regularized Regression Can Reintroduce Backdoor Confounding: The Case of Mass Polarization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20Regression%20Can%20Reintroduce%20Backdoor%20Confounding:%20The%20Case%20of%20Mass%20Polarization&rft.jtitle=The%20American%20political%20science%20review&rft.au=MELLON,%20JONATHAN&rft.date=2024-10-31&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=0003-0554&rft.eissn=1537-5943&rft_id=info:doi/10.1017/S0003055424000935&rft_dat=%3Ccrossref%3E10_1017_S0003055424000935%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true