Simulation of automatic helicopter deck landings using nature inspired flight control
Research studies have indicated that the optical flow parameter, time to close tau, is the basis of purposeful control in the animal world, and used by both fixed wing and helicopter pilots during manoeuvring. This parameter is defined as the instantaneous time to close a gap (spatial or force) at t...
Gespeichert in:
Veröffentlicht in: | Aeronautical journal 2010-01, Vol.114 (1151), p.25-34 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1151 |
container_start_page | 25 |
container_title | Aeronautical journal |
container_volume | 114 |
creator | Voskuijl, M. Padfield, G. D. Walker, D. J. Manimala, B. J Gubbels, A. W. |
description | Research studies have indicated that the optical flow parameter, time to close tau, is the basis of purposeful control in the animal world, and used by both fixed wing and helicopter pilots during manoeuvring. This parameter is defined as the instantaneous time to close a gap (spatial or force) at the current closing rate. A novel automatic flight control strategy has been developed that makes use of optical flow theory and in particular, the parameter tau. This strategy has been applied to two distinct problems; (1) the landing of a helicopter on a ship and (2) the lateral repositioning of a helicopter. The first is a challenging case because the landing of a helicopter on a ship is one of the most dangerous of all helicopter flight operations. Furthermore, helicopters are often subject to torque oscillations during rapid collective control, which increases pilot workload significantly when operating with low power margins and/or whilst performing tasks that require accurate heave control. The second case demonstrates the generality of the technique. Both automatic manoeuvres were simulated successfully within desired limits, with the novel control strategy creating a ‘natural’, smooth, tau motion. |
doi_str_mv | 10.1017/S000192400000350X |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S000192400000350X</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S000192400000350X</cupid><sourcerecordid>10_1017_S000192400000350X</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-9a9558ed8166eebb4da72bdc0d9c440f0664b5a6690855231d080558cb14d94e3</originalsourceid><addsrcrecordid>eNp9kE9LxDAQxYMouK5-AG-5eKxO2iTbHGXxHyx4WBe8lTRJu1nbpCTtwW9vyi5eBOfyGOb9HsxD6JbAPQGyetgCABE5hXkKBp9naJEDExmnnJ6jxXzO5vsluorxkDyQU7pAu63tp06O1jvsGyyn0fdpU3hvOqv8MJqAtVFfuJNOW9dGPMUk2MlxCgZbFwcbjMZNZ9v9iJV3Y_DdNbpoZBfNzUmXaPf89LF-zTbvL2_rx02mCiLGTEjBWGl0STg3pq6plqu81gq0UJRCA5zTmknOBZSM5QXRUEIiVE2oFtQUS0SOuSr4GINpqiHYXobvikA191L96SUxd0dmkFHJrgnSKRt_wTwvVlSIIvmKU7bs62B1a6qDn4JL__yT_gNA1XKt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simulation of automatic helicopter deck landings using nature inspired flight control</title><source>Cambridge University Press Journals Complete</source><creator>Voskuijl, M. ; Padfield, G. D. ; Walker, D. J. ; Manimala, B. J ; Gubbels, A. W.</creator><creatorcontrib>Voskuijl, M. ; Padfield, G. D. ; Walker, D. J. ; Manimala, B. J ; Gubbels, A. W.</creatorcontrib><description>Research studies have indicated that the optical flow parameter, time to close tau, is the basis of purposeful control in the animal world, and used by both fixed wing and helicopter pilots during manoeuvring. This parameter is defined as the instantaneous time to close a gap (spatial or force) at the current closing rate. A novel automatic flight control strategy has been developed that makes use of optical flow theory and in particular, the parameter tau. This strategy has been applied to two distinct problems; (1) the landing of a helicopter on a ship and (2) the lateral repositioning of a helicopter. The first is a challenging case because the landing of a helicopter on a ship is one of the most dangerous of all helicopter flight operations. Furthermore, helicopters are often subject to torque oscillations during rapid collective control, which increases pilot workload significantly when operating with low power margins and/or whilst performing tasks that require accurate heave control. The second case demonstrates the generality of the technique. Both automatic manoeuvres were simulated successfully within desired limits, with the novel control strategy creating a ‘natural’, smooth, tau motion.</description><identifier>ISSN: 0001-9240</identifier><identifier>EISSN: 2059-6464</identifier><identifier>DOI: 10.1017/S000192400000350X</identifier><identifier>CODEN: AENJAK</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied sciences ; Computer science; control theory; systems ; Control system synthesis ; Control theory. Systems ; Exact sciences and technology</subject><ispartof>Aeronautical journal, 2010-01, Vol.114 (1151), p.25-34</ispartof><rights>Copyright © Royal Aeronautical Society 2010</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-9a9558ed8166eebb4da72bdc0d9c440f0664b5a6690855231d080558cb14d94e3</citedby><cites>FETCH-LOGICAL-c319t-9a9558ed8166eebb4da72bdc0d9c440f0664b5a6690855231d080558cb14d94e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S000192400000350X/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,4024,27923,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22374993$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Voskuijl, M.</creatorcontrib><creatorcontrib>Padfield, G. D.</creatorcontrib><creatorcontrib>Walker, D. J.</creatorcontrib><creatorcontrib>Manimala, B. J</creatorcontrib><creatorcontrib>Gubbels, A. W.</creatorcontrib><title>Simulation of automatic helicopter deck landings using nature inspired flight control</title><title>Aeronautical journal</title><addtitle>Aeronaut. j. (1968)</addtitle><description>Research studies have indicated that the optical flow parameter, time to close tau, is the basis of purposeful control in the animal world, and used by both fixed wing and helicopter pilots during manoeuvring. This parameter is defined as the instantaneous time to close a gap (spatial or force) at the current closing rate. A novel automatic flight control strategy has been developed that makes use of optical flow theory and in particular, the parameter tau. This strategy has been applied to two distinct problems; (1) the landing of a helicopter on a ship and (2) the lateral repositioning of a helicopter. The first is a challenging case because the landing of a helicopter on a ship is one of the most dangerous of all helicopter flight operations. Furthermore, helicopters are often subject to torque oscillations during rapid collective control, which increases pilot workload significantly when operating with low power margins and/or whilst performing tasks that require accurate heave control. The second case demonstrates the generality of the technique. Both automatic manoeuvres were simulated successfully within desired limits, with the novel control strategy creating a ‘natural’, smooth, tau motion.</description><subject>Applied sciences</subject><subject>Computer science; control theory; systems</subject><subject>Control system synthesis</subject><subject>Control theory. Systems</subject><subject>Exact sciences and technology</subject><issn>0001-9240</issn><issn>2059-6464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LxDAQxYMouK5-AG-5eKxO2iTbHGXxHyx4WBe8lTRJu1nbpCTtwW9vyi5eBOfyGOb9HsxD6JbAPQGyetgCABE5hXkKBp9naJEDExmnnJ6jxXzO5vsluorxkDyQU7pAu63tp06O1jvsGyyn0fdpU3hvOqv8MJqAtVFfuJNOW9dGPMUk2MlxCgZbFwcbjMZNZ9v9iJV3Y_DdNbpoZBfNzUmXaPf89LF-zTbvL2_rx02mCiLGTEjBWGl0STg3pq6plqu81gq0UJRCA5zTmknOBZSM5QXRUEIiVE2oFtQUS0SOuSr4GINpqiHYXobvikA191L96SUxd0dmkFHJrgnSKRt_wTwvVlSIIvmKU7bs62B1a6qDn4JL__yT_gNA1XKt</recordid><startdate>201001</startdate><enddate>201001</enddate><creator>Voskuijl, M.</creator><creator>Padfield, G. D.</creator><creator>Walker, D. J.</creator><creator>Manimala, B. J</creator><creator>Gubbels, A. W.</creator><general>Cambridge University Press</general><general>Royal Aeronautical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201001</creationdate><title>Simulation of automatic helicopter deck landings using nature inspired flight control</title><author>Voskuijl, M. ; Padfield, G. D. ; Walker, D. J. ; Manimala, B. J ; Gubbels, A. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-9a9558ed8166eebb4da72bdc0d9c440f0664b5a6690855231d080558cb14d94e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Computer science; control theory; systems</topic><topic>Control system synthesis</topic><topic>Control theory. Systems</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Voskuijl, M.</creatorcontrib><creatorcontrib>Padfield, G. D.</creatorcontrib><creatorcontrib>Walker, D. J.</creatorcontrib><creatorcontrib>Manimala, B. J</creatorcontrib><creatorcontrib>Gubbels, A. W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voskuijl, M.</au><au>Padfield, G. D.</au><au>Walker, D. J.</au><au>Manimala, B. J</au><au>Gubbels, A. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation of automatic helicopter deck landings using nature inspired flight control</atitle><jtitle>Aeronautical journal</jtitle><addtitle>Aeronaut. j. (1968)</addtitle><date>2010-01</date><risdate>2010</risdate><volume>114</volume><issue>1151</issue><spage>25</spage><epage>34</epage><pages>25-34</pages><issn>0001-9240</issn><eissn>2059-6464</eissn><coden>AENJAK</coden><abstract>Research studies have indicated that the optical flow parameter, time to close tau, is the basis of purposeful control in the animal world, and used by both fixed wing and helicopter pilots during manoeuvring. This parameter is defined as the instantaneous time to close a gap (spatial or force) at the current closing rate. A novel automatic flight control strategy has been developed that makes use of optical flow theory and in particular, the parameter tau. This strategy has been applied to two distinct problems; (1) the landing of a helicopter on a ship and (2) the lateral repositioning of a helicopter. The first is a challenging case because the landing of a helicopter on a ship is one of the most dangerous of all helicopter flight operations. Furthermore, helicopters are often subject to torque oscillations during rapid collective control, which increases pilot workload significantly when operating with low power margins and/or whilst performing tasks that require accurate heave control. The second case demonstrates the generality of the technique. Both automatic manoeuvres were simulated successfully within desired limits, with the novel control strategy creating a ‘natural’, smooth, tau motion.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S000192400000350X</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-9240 |
ispartof | Aeronautical journal, 2010-01, Vol.114 (1151), p.25-34 |
issn | 0001-9240 2059-6464 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S000192400000350X |
source | Cambridge University Press Journals Complete |
subjects | Applied sciences Computer science control theory systems Control system synthesis Control theory. Systems Exact sciences and technology |
title | Simulation of automatic helicopter deck landings using nature inspired flight control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A22%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20of%20automatic%20helicopter%20deck%20landings%20using%20nature%20inspired%20flight%20control&rft.jtitle=Aeronautical%20journal&rft.au=Voskuijl,%20M.&rft.date=2010-01&rft.volume=114&rft.issue=1151&rft.spage=25&rft.epage=34&rft.pages=25-34&rft.issn=0001-9240&rft.eissn=2059-6464&rft.coden=AENJAK&rft_id=info:doi/10.1017/S000192400000350X&rft_dat=%3Ccambridge_cross%3E10_1017_S000192400000350X%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S000192400000350X&rfr_iscdi=true |