Modelling methane-air turbulent diffusion flame in a gas turbine combustor with artifical neural network
The present paper reports a way of using an artificial neural network (ANN) for modelling methane-air jet diffusion turbulent flame characteristics, such as temperature and chemical species mass fractions in a gas turbine combustion chamber. Since the neural network needs sets of examples to adapt i...
Gespeichert in:
Veröffentlicht in: | Aeronautical journal 2009-08, Vol.113 (1146), p.541-547 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 547 |
---|---|
container_issue | 1146 |
container_start_page | 541 |
container_title | Aeronautical journal |
container_volume | 113 |
creator | Mehdizadeh, N. S. Sinaei, P. |
description | The present paper reports a way of using an artificial neural network (ANN) for modelling methane-air jet diffusion turbulent flame characteristics, such as temperature and chemical species mass fractions in a gas turbine combustion chamber. Since the neural network needs sets of examples to adapt its synaptic weights in the training phase, we used pre-assumed probability density function (PDF) method and considered chemical equilibrium chemistry model to compute the flame characteristics for generating the examples of input-output data sets. In this approach, flow and mixing field results are presented with a non-linear first order k-ε model. The turbulence model is applied in combination with preassumed β-PDF modelling for turbulence-chemistry interaction. The training algorithm for the neural network is based on a back-propagation supervised learning procedure, and the feed-forward multilayer network is incorporated as neural network architecture. The ability of ANN model to represent a highly non-linear system, such as a turbulent non-premixed flame is illustrated, and it can be summarized that the results of modelling of the combustion characteristics using ANN model are satisfactory, and the CPU-time and memory savings encouraging. |
doi_str_mv | 10.1017/S0001924000003195 |
format | Article |
fullrecord | <record><control><sourceid>cambridge_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0001924000003195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0001924000003195</cupid><sourcerecordid>10_1017_S0001924000003195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c271t-4b746adca5445a999a177026e61854cf2b2905ab1cd6df3e66ba165790d02e173</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwAdi8MAZsx7HjEVX8k4oYgDm6OHbrkjiV7aji25O0FQsSt7zhvffT3SF0TcktJVTevRNCqGKcTJNTVZygGSOFygQX_BTNJjub_HN0EeNmzBDG-QytX_vGtK3zK9yZtAZvMnABpyHUQ2t8wo2zdoiu99i20BnsPAa8griPOG-w7rt6iKkPeOfSGkNIzjoNLfZmCHtJuz58XaIzC200V0edo8_Hh4_Fc7Z8e3pZ3C8zzSRNGa8lF9BoKDgvQCkFVErChBG0LLi2rGaKFFBT3YjG5kaIGqgopCINYYbKfI7ogatDH2MwttoG10H4riippldVf141dm4OnS3EcXMbwGsXf4uMlmWpxMTOj2zo6uCalak2_RD8eM8_9B8tknk1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Modelling methane-air turbulent diffusion flame in a gas turbine combustor with artifical neural network</title><source>Cambridge University Press Journals Complete</source><creator>Mehdizadeh, N. S. ; Sinaei, P.</creator><creatorcontrib>Mehdizadeh, N. S. ; Sinaei, P.</creatorcontrib><description>The present paper reports a way of using an artificial neural network (ANN) for modelling methane-air jet diffusion turbulent flame characteristics, such as temperature and chemical species mass fractions in a gas turbine combustion chamber. Since the neural network needs sets of examples to adapt its synaptic weights in the training phase, we used pre-assumed probability density function (PDF) method and considered chemical equilibrium chemistry model to compute the flame characteristics for generating the examples of input-output data sets. In this approach, flow and mixing field results are presented with a non-linear first order k-ε model. The turbulence model is applied in combination with preassumed β-PDF modelling for turbulence-chemistry interaction. The training algorithm for the neural network is based on a back-propagation supervised learning procedure, and the feed-forward multilayer network is incorporated as neural network architecture. The ability of ANN model to represent a highly non-linear system, such as a turbulent non-premixed flame is illustrated, and it can be summarized that the results of modelling of the combustion characteristics using ANN model are satisfactory, and the CPU-time and memory savings encouraging.</description><identifier>ISSN: 0001-9240</identifier><identifier>EISSN: 2059-6464</identifier><identifier>DOI: 10.1017/S0001924000003195</identifier><identifier>CODEN: AENJAK</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology</subject><ispartof>Aeronautical journal, 2009-08, Vol.113 (1146), p.541-547</ispartof><rights>Copyright © Royal Aeronautical Society 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c271t-4b746adca5445a999a177026e61854cf2b2905ab1cd6df3e66ba165790d02e173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0001924000003195/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21888967$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mehdizadeh, N. S.</creatorcontrib><creatorcontrib>Sinaei, P.</creatorcontrib><title>Modelling methane-air turbulent diffusion flame in a gas turbine combustor with artifical neural network</title><title>Aeronautical journal</title><addtitle>Aeronaut. j. (1968)</addtitle><description>The present paper reports a way of using an artificial neural network (ANN) for modelling methane-air jet diffusion turbulent flame characteristics, such as temperature and chemical species mass fractions in a gas turbine combustion chamber. Since the neural network needs sets of examples to adapt its synaptic weights in the training phase, we used pre-assumed probability density function (PDF) method and considered chemical equilibrium chemistry model to compute the flame characteristics for generating the examples of input-output data sets. In this approach, flow and mixing field results are presented with a non-linear first order k-ε model. The turbulence model is applied in combination with preassumed β-PDF modelling for turbulence-chemistry interaction. The training algorithm for the neural network is based on a back-propagation supervised learning procedure, and the feed-forward multilayer network is incorporated as neural network architecture. The ability of ANN model to represent a highly non-linear system, such as a turbulent non-premixed flame is illustrated, and it can be summarized that the results of modelling of the combustion characteristics using ANN model are satisfactory, and the CPU-time and memory savings encouraging.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><issn>0001-9240</issn><issn>2059-6464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EEqXwAdi8MAZsx7HjEVX8k4oYgDm6OHbrkjiV7aji25O0FQsSt7zhvffT3SF0TcktJVTevRNCqGKcTJNTVZygGSOFygQX_BTNJjub_HN0EeNmzBDG-QytX_vGtK3zK9yZtAZvMnABpyHUQ2t8wo2zdoiu99i20BnsPAa8griPOG-w7rt6iKkPeOfSGkNIzjoNLfZmCHtJuz58XaIzC200V0edo8_Hh4_Fc7Z8e3pZ3C8zzSRNGa8lF9BoKDgvQCkFVErChBG0LLi2rGaKFFBT3YjG5kaIGqgopCINYYbKfI7ogatDH2MwttoG10H4riippldVf141dm4OnS3EcXMbwGsXf4uMlmWpxMTOj2zo6uCalak2_RD8eM8_9B8tknk1</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Mehdizadeh, N. S.</creator><creator>Sinaei, P.</creator><general>Cambridge University Press</general><general>Royal Aeronautical Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20090801</creationdate><title>Modelling methane-air turbulent diffusion flame in a gas turbine combustor with artifical neural network</title><author>Mehdizadeh, N. S. ; Sinaei, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c271t-4b746adca5445a999a177026e61854cf2b2905ab1cd6df3e66ba165790d02e173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mehdizadeh, N. S.</creatorcontrib><creatorcontrib>Sinaei, P.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Aeronautical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mehdizadeh, N. S.</au><au>Sinaei, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling methane-air turbulent diffusion flame in a gas turbine combustor with artifical neural network</atitle><jtitle>Aeronautical journal</jtitle><addtitle>Aeronaut. j. (1968)</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>113</volume><issue>1146</issue><spage>541</spage><epage>547</epage><pages>541-547</pages><issn>0001-9240</issn><eissn>2059-6464</eissn><coden>AENJAK</coden><abstract>The present paper reports a way of using an artificial neural network (ANN) for modelling methane-air jet diffusion turbulent flame characteristics, such as temperature and chemical species mass fractions in a gas turbine combustion chamber. Since the neural network needs sets of examples to adapt its synaptic weights in the training phase, we used pre-assumed probability density function (PDF) method and considered chemical equilibrium chemistry model to compute the flame characteristics for generating the examples of input-output data sets. In this approach, flow and mixing field results are presented with a non-linear first order k-ε model. The turbulence model is applied in combination with preassumed β-PDF modelling for turbulence-chemistry interaction. The training algorithm for the neural network is based on a back-propagation supervised learning procedure, and the feed-forward multilayer network is incorporated as neural network architecture. The ability of ANN model to represent a highly non-linear system, such as a turbulent non-premixed flame is illustrated, and it can be summarized that the results of modelling of the combustion characteristics using ANN model are satisfactory, and the CPU-time and memory savings encouraging.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0001924000003195</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-9240 |
ispartof | Aeronautical journal, 2009-08, Vol.113 (1146), p.541-547 |
issn | 0001-9240 2059-6464 |
language | eng |
recordid | cdi_crossref_primary_10_1017_S0001924000003195 |
source | Cambridge University Press Journals Complete |
subjects | Applied sciences Energy Energy. Thermal use of fuels Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology |
title | Modelling methane-air turbulent diffusion flame in a gas turbine combustor with artifical neural network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A08%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-cambridge_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20methane-air%20turbulent%20diffusion%20flame%20in%20a%20gas%20turbine%20combustor%20with%20artifical%20neural%20network&rft.jtitle=Aeronautical%20journal&rft.au=Mehdizadeh,%20N.%20S.&rft.date=2009-08-01&rft.volume=113&rft.issue=1146&rft.spage=541&rft.epage=547&rft.pages=541-547&rft.issn=0001-9240&rft.eissn=2059-6464&rft.coden=AENJAK&rft_id=info:doi/10.1017/S0001924000003195&rft_dat=%3Ccambridge_cross%3E10_1017_S0001924000003195%3C/cambridge_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_cupid=10_1017_S0001924000003195&rfr_iscdi=true |