Shot noise on cluster processes with cluster marks, and studies of long range dependence

With the aim of providing greater flexibility in developing and applying shot noise models, this paper studies shot noise on cluster point processes with both pointwise and cluster marks. For example, in financial modelling, responses to events in the financial market may occur in clusters, with ran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 2001-09, Vol.33 (3), p.631-651
Hauptverfasser: Ramirez-Perez, Filemon, Serfling, Robert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 651
container_issue 3
container_start_page 631
container_title Advances in applied probability
container_volume 33
creator Ramirez-Perez, Filemon
Serfling, Robert
description With the aim of providing greater flexibility in developing and applying shot noise models, this paper studies shot noise on cluster point processes with both pointwise and cluster marks. For example, in financial modelling, responses to events in the financial market may occur in clusters, with random amplitudes including a ‘cluster component’ reflecting a degree of commonness among responses within a cluster. For such shot noise models, general formulae for the characteristic functional are developed and specialized to the case of Neyman-Scott clustering with cluster marks. For several general forms of response function, long range dependence of the corresponding equilibrium shot noise models is investigated. It is shown, for example, that long range dependence holds when the ‘structure component’ of the response function decays slowly enough, or when the response function has a finite random duration with a heavy tailed distribution.
doi_str_mv 10.1017/S0001867800011046
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0001867800011046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0001867800011046</sourcerecordid><originalsourceid>FETCH-LOGICAL-c127t-475c42e458aa89811250aa46819de7aaaa91fc015b3690fe34757a624c6702c73</originalsourceid><addsrcrecordid>eNplUE1LxDAQDaLguvoDvOUHWJ1p06Q9yuIXLHhYBW8lptPdak1Kpov4701RvDiXx7w383g8Ic4RLhHQXG0AACttqhkRlD4QC1SmzDRodSgWM53N-rE4YX5La5FuF-JlswuT9KFnksFLN-x5oijHGBwxE8vPftr90R82vvOFtL6VPO3bPumhk0PwWxmt35JsaSTfknd0Ko46OzCd_eJSPN_ePK3us_Xj3cPqep05zM2UpYhO5aTKytqqrhDzEqxVusK6JWPT1Ng5wPK10DV0VKQHY3WunDaQO1MsBf74uhiYI3XNGPuU86tBaOZqmn_VFN9SmlZc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Shot noise on cluster processes with cluster marks, and studies of long range dependence</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Ramirez-Perez, Filemon ; Serfling, Robert</creator><creatorcontrib>Ramirez-Perez, Filemon ; Serfling, Robert</creatorcontrib><description>With the aim of providing greater flexibility in developing and applying shot noise models, this paper studies shot noise on cluster point processes with both pointwise and cluster marks. For example, in financial modelling, responses to events in the financial market may occur in clusters, with random amplitudes including a ‘cluster component’ reflecting a degree of commonness among responses within a cluster. For such shot noise models, general formulae for the characteristic functional are developed and specialized to the case of Neyman-Scott clustering with cluster marks. For several general forms of response function, long range dependence of the corresponding equilibrium shot noise models is investigated. It is shown, for example, that long range dependence holds when the ‘structure component’ of the response function decays slowly enough, or when the response function has a finite random duration with a heavy tailed distribution.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1017/S0001867800011046</identifier><language>eng</language><ispartof>Advances in applied probability, 2001-09, Vol.33 (3), p.631-651</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c127t-475c42e458aa89811250aa46819de7aaaa91fc015b3690fe34757a624c6702c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ramirez-Perez, Filemon</creatorcontrib><creatorcontrib>Serfling, Robert</creatorcontrib><title>Shot noise on cluster processes with cluster marks, and studies of long range dependence</title><title>Advances in applied probability</title><description>With the aim of providing greater flexibility in developing and applying shot noise models, this paper studies shot noise on cluster point processes with both pointwise and cluster marks. For example, in financial modelling, responses to events in the financial market may occur in clusters, with random amplitudes including a ‘cluster component’ reflecting a degree of commonness among responses within a cluster. For such shot noise models, general formulae for the characteristic functional are developed and specialized to the case of Neyman-Scott clustering with cluster marks. For several general forms of response function, long range dependence of the corresponding equilibrium shot noise models is investigated. It is shown, for example, that long range dependence holds when the ‘structure component’ of the response function decays slowly enough, or when the response function has a finite random duration with a heavy tailed distribution.</description><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNplUE1LxDAQDaLguvoDvOUHWJ1p06Q9yuIXLHhYBW8lptPdak1Kpov4701RvDiXx7w383g8Ic4RLhHQXG0AACttqhkRlD4QC1SmzDRodSgWM53N-rE4YX5La5FuF-JlswuT9KFnksFLN-x5oijHGBwxE8vPftr90R82vvOFtL6VPO3bPumhk0PwWxmt35JsaSTfknd0Ko46OzCd_eJSPN_ePK3us_Xj3cPqep05zM2UpYhO5aTKytqqrhDzEqxVusK6JWPT1Ng5wPK10DV0VKQHY3WunDaQO1MsBf74uhiYI3XNGPuU86tBaOZqmn_VFN9SmlZc</recordid><startdate>200109</startdate><enddate>200109</enddate><creator>Ramirez-Perez, Filemon</creator><creator>Serfling, Robert</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>200109</creationdate><title>Shot noise on cluster processes with cluster marks, and studies of long range dependence</title><author>Ramirez-Perez, Filemon ; Serfling, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c127t-475c42e458aa89811250aa46819de7aaaa91fc015b3690fe34757a624c6702c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Perez, Filemon</creatorcontrib><creatorcontrib>Serfling, Robert</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramirez-Perez, Filemon</au><au>Serfling, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shot noise on cluster processes with cluster marks, and studies of long range dependence</atitle><jtitle>Advances in applied probability</jtitle><date>2001-09</date><risdate>2001</risdate><volume>33</volume><issue>3</issue><spage>631</spage><epage>651</epage><pages>631-651</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><abstract>With the aim of providing greater flexibility in developing and applying shot noise models, this paper studies shot noise on cluster point processes with both pointwise and cluster marks. For example, in financial modelling, responses to events in the financial market may occur in clusters, with random amplitudes including a ‘cluster component’ reflecting a degree of commonness among responses within a cluster. For such shot noise models, general formulae for the characteristic functional are developed and specialized to the case of Neyman-Scott clustering with cluster marks. For several general forms of response function, long range dependence of the corresponding equilibrium shot noise models is investigated. It is shown, for example, that long range dependence holds when the ‘structure component’ of the response function decays slowly enough, or when the response function has a finite random duration with a heavy tailed distribution.</abstract><doi>10.1017/S0001867800011046</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 2001-09, Vol.33 (3), p.631-651
issn 0001-8678
1475-6064
language eng
recordid cdi_crossref_primary_10_1017_S0001867800011046
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing
title Shot noise on cluster processes with cluster marks, and studies of long range dependence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T09%3A34%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shot%20noise%20on%20cluster%20processes%20with%20cluster%20marks,%20and%20studies%20of%20long%20range%20dependence&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Ramirez-Perez,%20Filemon&rft.date=2001-09&rft.volume=33&rft.issue=3&rft.spage=631&rft.epage=651&rft.pages=631-651&rft.issn=0001-8678&rft.eissn=1475-6064&rft_id=info:doi/10.1017/S0001867800011046&rft_dat=%3Ccrossref%3E10_1017_S0001867800011046%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true