Large deviations, moderate deviations, and queues with long-range dependent input

Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y , as a fractional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in applied probability 1999-03, Vol.31 (1), p.254-278
Hauptverfasser: Chang, Cheng-Shang, Yao, David D., Zajic, Tim
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 278
container_issue 1
container_start_page 254
container_title Advances in applied probability
container_volume 31
creator Chang, Cheng-Shang
Yao, David D.
Zajic, Tim
description Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y , as a fractional integral of Riemann-Liouville type applied to a more standard process X —one that does not have long-range dependence. When X takes the form of a sample path process with bounded stationary increments, we provide a criterion for X to satisfy a moderate deviations principle (MDP). Based on the MDP of X , we then establish the MDP for Y . Furthermore, we characterize, in terms of the MDP, the transient behavior of queues when fed with the long-range dependent input process Y . In particular, we identify the most likely path that leads to a large queue, and demonstrate that unlike the case where the input has short-range dependence, the path here is nonlinear.
doi_str_mv 10.1017/S0001867800009058
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1017_S0001867800009058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1017_S0001867800009058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c175t-445e0e437eed26bcf90d6dc0546c5ec113cfd3ab7085690285f312dc861ad5c03</originalsourceid><addsrcrecordid>eNplUMtKxDAUDaLgOPoB7voBRm-aZ5cy-IKCiLoumeR2rMykNUkV_95W3Yirw3kuDiGnDM4ZMH3xCADMKG0mhAqk2SMLJrSkCpTYJ4vZprN_SI5Sep0on7IL8lDbuMHC43tnc9eHdFbseo_R5r-iDb54G3HEVHx0-aXY9mFDow3f3QGDx5CLLgxjPiYHrd0mPPnFJXm-vnpa3dL6_uZudVlTx7TMVAiJgIJrRF-qtWsr8Mo7kEI5iY4x7lrP7VqDkaqC0siWs9I7o5j10gFfEvaz62KfUsS2GWK3s_GzYdDMnzT_PuFf9xVU4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Large deviations, moderate deviations, and queues with long-range dependent input</title><source>JSTOR Mathematics and Statistics</source><source>JSTOR</source><creator>Chang, Cheng-Shang ; Yao, David D. ; Zajic, Tim</creator><creatorcontrib>Chang, Cheng-Shang ; Yao, David D. ; Zajic, Tim</creatorcontrib><description>Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y , as a fractional integral of Riemann-Liouville type applied to a more standard process X —one that does not have long-range dependence. When X takes the form of a sample path process with bounded stationary increments, we provide a criterion for X to satisfy a moderate deviations principle (MDP). Based on the MDP of X , we then establish the MDP for Y . Furthermore, we characterize, in terms of the MDP, the transient behavior of queues when fed with the long-range dependent input process Y . In particular, we identify the most likely path that leads to a large queue, and demonstrate that unlike the case where the input has short-range dependence, the path here is nonlinear.</description><identifier>ISSN: 0001-8678</identifier><identifier>EISSN: 1475-6064</identifier><identifier>DOI: 10.1017/S0001867800009058</identifier><language>eng</language><ispartof>Advances in applied probability, 1999-03, Vol.31 (1), p.254-278</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c175t-445e0e437eed26bcf90d6dc0546c5ec113cfd3ab7085690285f312dc861ad5c03</citedby><cites>FETCH-LOGICAL-c175t-445e0e437eed26bcf90d6dc0546c5ec113cfd3ab7085690285f312dc861ad5c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chang, Cheng-Shang</creatorcontrib><creatorcontrib>Yao, David D.</creatorcontrib><creatorcontrib>Zajic, Tim</creatorcontrib><title>Large deviations, moderate deviations, and queues with long-range dependent input</title><title>Advances in applied probability</title><description>Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y , as a fractional integral of Riemann-Liouville type applied to a more standard process X —one that does not have long-range dependence. When X takes the form of a sample path process with bounded stationary increments, we provide a criterion for X to satisfy a moderate deviations principle (MDP). Based on the MDP of X , we then establish the MDP for Y . Furthermore, we characterize, in terms of the MDP, the transient behavior of queues when fed with the long-range dependent input process Y . In particular, we identify the most likely path that leads to a large queue, and demonstrate that unlike the case where the input has short-range dependence, the path here is nonlinear.</description><issn>0001-8678</issn><issn>1475-6064</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNplUMtKxDAUDaLgOPoB7voBRm-aZ5cy-IKCiLoumeR2rMykNUkV_95W3Yirw3kuDiGnDM4ZMH3xCADMKG0mhAqk2SMLJrSkCpTYJ4vZprN_SI5Sep0on7IL8lDbuMHC43tnc9eHdFbseo_R5r-iDb54G3HEVHx0-aXY9mFDow3f3QGDx5CLLgxjPiYHrd0mPPnFJXm-vnpa3dL6_uZudVlTx7TMVAiJgIJrRF-qtWsr8Mo7kEI5iY4x7lrP7VqDkaqC0siWs9I7o5j10gFfEvaz62KfUsS2GWK3s_GzYdDMnzT_PuFf9xVU4Q</recordid><startdate>199903</startdate><enddate>199903</enddate><creator>Chang, Cheng-Shang</creator><creator>Yao, David D.</creator><creator>Zajic, Tim</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199903</creationdate><title>Large deviations, moderate deviations, and queues with long-range dependent input</title><author>Chang, Cheng-Shang ; Yao, David D. ; Zajic, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c175t-445e0e437eed26bcf90d6dc0546c5ec113cfd3ab7085690285f312dc861ad5c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chang, Cheng-Shang</creatorcontrib><creatorcontrib>Yao, David D.</creatorcontrib><creatorcontrib>Zajic, Tim</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chang, Cheng-Shang</au><au>Yao, David D.</au><au>Zajic, Tim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large deviations, moderate deviations, and queues with long-range dependent input</atitle><jtitle>Advances in applied probability</jtitle><date>1999-03</date><risdate>1999</risdate><volume>31</volume><issue>1</issue><spage>254</spage><epage>278</epage><pages>254-278</pages><issn>0001-8678</issn><eissn>1475-6064</eissn><abstract>Long-range dependence has been recently asserted to be an important characteristic in modeling telecommunications traffic. Inspired by the integral relationship between the fractional Brownian motion and the standard Brownian motion, we model a process with long-range dependence, Y , as a fractional integral of Riemann-Liouville type applied to a more standard process X —one that does not have long-range dependence. When X takes the form of a sample path process with bounded stationary increments, we provide a criterion for X to satisfy a moderate deviations principle (MDP). Based on the MDP of X , we then establish the MDP for Y . Furthermore, we characterize, in terms of the MDP, the transient behavior of queues when fed with the long-range dependent input process Y . In particular, we identify the most likely path that leads to a large queue, and demonstrate that unlike the case where the input has short-range dependence, the path here is nonlinear.</abstract><doi>10.1017/S0001867800009058</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-8678
ispartof Advances in applied probability, 1999-03, Vol.31 (1), p.254-278
issn 0001-8678
1475-6064
language eng
recordid cdi_crossref_primary_10_1017_S0001867800009058
source JSTOR Mathematics and Statistics; JSTOR
title Large deviations, moderate deviations, and queues with long-range dependent input
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A52%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20deviations,%20moderate%20deviations,%20and%20queues%20with%20long-range%20dependent%20input&rft.jtitle=Advances%20in%20applied%20probability&rft.au=Chang,%20Cheng-Shang&rft.date=1999-03&rft.volume=31&rft.issue=1&rft.spage=254&rft.epage=278&rft.pages=254-278&rft.issn=0001-8678&rft.eissn=1475-6064&rft_id=info:doi/10.1017/S0001867800009058&rft_dat=%3Ccrossref%3E10_1017_S0001867800009058%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true