Generalized quasi-metric semilattices

Motivated by the recent introduction of the intrinsic semilattice entropy, we study generalized quasi-metric semilattices and their categories. We investigate the relationship between these objects and generalized semivaluations, extending Nakamura and Schellekens' approach. Finally, we use thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Topology and its applications 2022-03, Vol.309, p.107916, Article 107916
Hauptverfasser: Dikranjan, Dikran, Giordano Bruno, Anna, Künzi, Hans-Peter, Zava, Nicolò, Toller, Daniele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Motivated by the recent introduction of the intrinsic semilattice entropy, we study generalized quasi-metric semilattices and their categories. We investigate the relationship between these objects and generalized semivaluations, extending Nakamura and Schellekens' approach. Finally, we use this correspondence to compare the intrinsic semilattice entropy and the semigroup entropy induced in particular situations, like sets, torsion abelian groups and vector spaces.
ISSN:0166-8641
1879-3207
DOI:10.1016/j.topol.2021.107916