Role of surface nanocrystallization on corrosion properties of low carbon steel during surface mechanical attrition treatment
Surface mechanical attrition treatment (SMAT) was carried out on low carbon steel (LCS) by varying ball size from 4 to 8 mm diameter. Present work studies the effect of ball size on the electrochemical behaviour of the LCS in 3.5 wt.% NaCl solution, using open circuit potential (OCP), impedance (EIS...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2020-08, Vol.396, p.125964, Article 125964 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Surface mechanical attrition treatment (SMAT) was carried out on low carbon steel (LCS) by varying ball size from 4 to 8 mm diameter. Present work studies the effect of ball size on the electrochemical behaviour of the LCS in 3.5 wt.% NaCl solution, using open circuit potential (OCP), impedance (EIS) and anodic polarization methods. The untreated LCS shows ~29 nm grain size, whereas after SMAT with 4 mm ball size exhibited remarkable reduction in grain size i.e., ~11 nm. Reduction in grain size was achieved due to the presence of highly densified mechanical twins after SMAT as well as the formation of dislocation tangles that rearrange themselves into nanocrystallites. These factors have a direct impact on the corrosion behaviour of SMATed LCS. The increase in corrosion potential (Ecorr) towards positive side and a reduction of 93% in corrosion current density (icorr) value were observed after SMAT using 4 mm balls as compared to the untreated LCS. Remarkable improvement in corrosion resistance was due to grain refinement after SMAT processing, hindrance of the corrosive ion, increase in the activity of charge carriers at the interface between solution and substrate, and reduction in surface roughness. Nanocrystalline surface after SMAT effectively hindered the chloride infiltration into the substrate and resisted pit formation, thus the corrosion performance is improved.
•SMAT was carried out on low carbon steel (LCS) for varying ball size of 4 to 8 mm.•SMATed-4 mm LCS exhibited remarkable reduction in grain size i.e., ~11 nm.•Reduced grain size was due to densified mechanical twins and dislocation tangles.•Exhaustive electrochemical behaviour was studied on SMAT processed steel.•Reduction of 93% in icorr value were observed after SMATed-4 mm LCS. |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/j.surfcoat.2020.125964 |