An experimental and theoretical approach for the biogas dry reforming reaction using perovskite-derived La0.8X0.2NiO3-δ catalysts (X = Sm, Pr, Ce)
The work presented herein reports on the investigation of the biogas dry reforming catalytic performance of LaNiO3 (LNO), La0.8Sm0.2NiO3 (LSNO), La0.8Pr0.2NiO3 (LPNO) and La0.8Ce0.2NiO3 (LCNO). The perovskite-type materials were synthesized via citrate sol-gel and characterized using XRD, N2 physiso...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2024-06, Vol.227, p.120511, Article 120511 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The work presented herein reports on the investigation of the biogas dry reforming catalytic performance of LaNiO3 (LNO), La0.8Sm0.2NiO3 (LSNO), La0.8Pr0.2NiO3 (LPNO) and La0.8Ce0.2NiO3 (LCNO). The perovskite-type materials were synthesized via citrate sol-gel and characterized using XRD, N2 physisorption H2-TPR, H2-TPD, TEM, HAADF-STEM and XPS. The performance of all catalysts in terms of both activity and stability was examined in order to assess the effect of temperature on the CH4 and CO2 conversion, as well as on the H2 and CO yield and the H2/CO molar ratio of the produced gas mixture. Experimental results showed that modification of LaNiO3 with Sm and Pr enhanced the catalytic performance in terms of catalytic stability and reduced the order/crystallinity of the deposited coke. A theoretical model was also produced in Python with the purpose of simulating the catalytic performance. Modelling results showed a good agreement with the experimental values and therefore confirm the validity of the model for predicting the dry reforming catalytic performance.
[Display omitted] |
---|---|
ISSN: | 0960-1481 1879-0682 |
DOI: | 10.1016/j.renene.2024.120511 |