Existence and uniqueness of maximal strong solution of a 1D blood flow in a network of vessels

We study the well-posedness of a system of one-dimensional partial differential equations modeling blood flows in a network of vessels with viscoelastic walls. We prove the existence and uniqueness of maximal strong solution for this type of hyperbolic/parabolic model. We also prove a stability esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis: real world applications 2022-02, Vol.63, p.103405, Article 103405
Hauptverfasser: Maity, Debayan, Raymond, Jean-Pierre, Roy, Arnab
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the well-posedness of a system of one-dimensional partial differential equations modeling blood flows in a network of vessels with viscoelastic walls. We prove the existence and uniqueness of maximal strong solution for this type of hyperbolic/parabolic model. We also prove a stability estimate under suitable nonlinear Robin boundary conditions.
ISSN:1468-1218
1878-5719
DOI:10.1016/j.nonrwa.2021.103405