Existence and uniqueness of maximal strong solution of a 1D blood flow in a network of vessels
We study the well-posedness of a system of one-dimensional partial differential equations modeling blood flows in a network of vessels with viscoelastic walls. We prove the existence and uniqueness of maximal strong solution for this type of hyperbolic/parabolic model. We also prove a stability esti...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis: real world applications 2022-02, Vol.63, p.103405, Article 103405 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the well-posedness of a system of one-dimensional partial differential equations modeling blood flows in a network of vessels with viscoelastic walls. We prove the existence and uniqueness of maximal strong solution for this type of hyperbolic/parabolic model. We also prove a stability estimate under suitable nonlinear Robin boundary conditions. |
---|---|
ISSN: | 1468-1218 1878-5719 |
DOI: | 10.1016/j.nonrwa.2021.103405 |