Impact of prospective motion correction, distortion correction methods and large vein bias on the spatial accuracy of cortical laminar fMRI at 9.4 Tesla
Functional imaging with sub-millimeter spatial resolution is a basic requirement for assessing functional MRI (fMRI) responses across different cortical depths and is used extensively in the emerging field of laminar fMRI. Such studies seek to investigate the detailed functional organization of the...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2020-03, Vol.208, p.116434-116434, Article 116434 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Functional imaging with sub-millimeter spatial resolution is a basic requirement for assessing functional MRI (fMRI) responses across different cortical depths and is used extensively in the emerging field of laminar fMRI. Such studies seek to investigate the detailed functional organization of the brain and may develop to a new powerful tool for human neuroscience. However, several studies have shown that measurement of laminar fMRI responses can be biased by the image acquisition and data processing strategies. In this work, measurements with three different gradient-echo EPI BOLD fMRI protocols with a voxel size down to 650 μm isotropic were performed at 9.4 T. We estimated how prospective motion correction can help to improve spatial accuracy by reducing the number of spatial resampling steps in postprocessing. In addition, we demonstrate key requirements for accurate geometric distortion correction to ensure that distortion correction maps are properly aligned to the functional data and that strong variations of distortions near large veins can lead to signal overlays which cannot be corrected for during postprocessing. Furthermore, this study illustrates the spatial extent of bias induced by pial and other larger veins in laminar BOLD experiments. Since these issues under investigation affect studies performed with more conventional spatial resolutions, the methods applied in this work may also help to improve the understanding of the BOLD signal more broadly.
•Prospective motion correction can help to reduce the number of processing steps affecting spatial accuracy of laminar fMRI.•Magnitude PSF distortion correction leads to resolution losses.•Signal of voxels close to large veins may be displaced by several millimeters.•Laminar GE-BOLD signal is 60% lower at distances above 1 mm from large veins.•The GE-BOLD signal increases towards the surface even distant from large veins. |
---|---|
ISSN: | 1053-8119 1095-9572 1095-9572 |
DOI: | 10.1016/j.neuroimage.2019.116434 |