About the general chain rule for functions of bounded variation
We give an alternative proof of the general chain rule for functions of bounded variation (Ambrosio and Maso, 1990), which allows to compute the distributional differential of φ∘F, where φ∈LIP(Rm) and F∈BV(Rn,Rm). In our argument we build on top of recently established links between “closability of...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2024-05, Vol.242, p.113518, Article 113518 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give an alternative proof of the general chain rule for functions of bounded variation (Ambrosio and Maso, 1990), which allows to compute the distributional differential of φ∘F, where φ∈LIP(Rm) and F∈BV(Rn,Rm). In our argument we build on top of recently established links between “closability of certain differentiation operators” and “differentiability of Lipschitz functions in related directions” (Alberti et al., 2023): we couple this with the observation that “the map that takes φ and returns the distributional differential of φ∘F is closable” to conclude.
Unlike previous results in this direction, our proof can directly be adapted to the non-smooth setting of finite dimensional RCD spaces. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2024.113518 |