Bridge buffeting by skew winds: A revised theory

An improved bridge buffeting theory is established with an emphasis on skew wind directions, for both turbulence- and motion-dependent forces. It provides simplifications and generalizations of previously established methods. The formulation starts with a preferred 3D approach, which is suitable whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of wind engineering and industrial aerodynamics 2022-01, Vol.220, p.104806, Article 104806
Hauptverfasser: da Costa, Bernardo Morais, Wang, Jungao, Jakobsen, Jasna Bogunović, Øiseth, Ole Andre, Snæbjörnsson, Jónas þór
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An improved bridge buffeting theory is established with an emphasis on skew wind directions, for both turbulence- and motion-dependent forces. It provides simplifications and generalizations of previously established methods. The formulation starts with a preferred 3D approach, which is suitable when aerodynamic coefficients for different yaw and inclination angles are readily available. The 3D approach includes a new convenient choice of coordinate systems and an intuitive derivation of transformation matrices, supporting clear and compact wind load expressions as well as a more accurate formulation of the quasi-steady motion-dependent forces. When the aerodynamic coefficients have only been obtained for wind normal to the bridge girder, an alternative 2D approach is provided. The 2D approach, where only the normal projection of the wind is considered, is further expanded to include mean wind directions that are both yawed and inclined, axial forces in the longitudinal direction (1D) in an optional 2D ​+ ​1D format, and forces due to all in-plane and out-of-plane motions. All expressions are first presented in a compact non-linear format and then linearized through numerous multivariate Taylor series approximations. A general, more straightforward and more accurate framework is thus established for both time- and frequency-domain analyses of the buffeting response. •Skew winds should be considered in bridge aerodynamics.•An improved theoretical model for skew wind buffeting loads is established.•Turbulence, motion-dependencies, axial forces and all linearized forms included.
ISSN:0167-6105
1872-8197
DOI:10.1016/j.jweia.2021.104806