Can sporadic records of ocean sunfish (Mola mola) in the western Baltic Sea be linked to saline inflow events?

The Baltic Sea is one of the largest brackish water bodies in the world with salinity levels ranging from fresh water conditions in the northeast to full strength saline waters at its transition zone to the North Sea in the west. Most of the water exchange happens in the SW Baltic Sea, the Belt Sea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of marine systems 2022-12, Vol.236, p.103802, Article 103802
Hauptverfasser: Hinrichsen, H.-H., Barz, K., Lehmann, A., Moritz, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Baltic Sea is one of the largest brackish water bodies in the world with salinity levels ranging from fresh water conditions in the northeast to full strength saline waters at its transition zone to the North Sea in the west. Most of the water exchange happens in the SW Baltic Sea, the Belt Sea and The Sound where less saline water exits the Baltic Sea at the surface, while higher saline water is entering the Baltic at depth. Thus, the species composition in the Baltic Sea is heavily influenced by the strong salinity gradient, and here several species occur at their limit of their physiological tolerance and preference. In this study, we focused on sightings of the ocean sunfish Mola mola recorded in the western Baltic Sea between 1978 and 2020. This species is regarded as vagrant in the Baltic Sea, i.e., it does not belong to the common species assemblage in this area. Hydrographic conditions, such as water temperature and salinity, were obtained from a highly spatio-temporally resolved hydrodynamic Baltic Sea model, covering a daily resolved 71-year time series. We investigated if the occurrence of M. mola correlates with the dynamics of water mass exchange between the Kattegat/Skagerrak and the SW Baltic Sea. Our analyses show that these occurrences could be related to the presence of anomalously high saline water masses. However, in autumn and winter water temperatures of the western Baltic Sea usually drop below 8 °C with further cooling in January and February to 4–5 °C and during strong winters even down to
ISSN:0924-7963
1879-1573
DOI:10.1016/j.jmarsys.2022.103802