A proof of a conjecture of Mao on Beck's partition statistics modulo 8
Beck introduced two partition statistics NT(r,m,n) and Mω(r,m,n), which denote the total number of parts in the partition of n with rank congruent to r modulo m and the total number of ones in the partition of n with crank congruent to r modulo m, respectively. In recent years, a number of congruenc...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2024-03, Vol.531 (2), p.127837, Article 127837 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Beck introduced two partition statistics NT(r,m,n) and Mω(r,m,n), which denote the total number of parts in the partition of n with rank congruent to r modulo m and the total number of ones in the partition of n with crank congruent to r modulo m, respectively. In recent years, a number of congruences and identities on NT(r,m,n) and Mω(r,m,n) for some small m have been established. In this paper, we prove an identity on NT(r,8,n) and Mω(r,4,n) which confirm a conjecture given by Mao. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2023.127837 |