An integrated experimental design framework for optimizing solute transport monitoring locations in heterogeneous sedimentary media

•A flexible optimal experiment design framework is developed.•The optimized network provides sufficient information with high data worth.•The monitoring locations are optimized for enhancing plume characterization.•The test duration is selected with information entropy and parameter uncertainty. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2022-11, Vol.614, p.128541, Article 128541
Hauptverfasser: Dai, Zhenxue, Ma, Ziqi, Zhang, Xiaoying, Chen, Junjun, Ershadnia, Reza, Luan, Xiaoyan, Soltanian, Mohamad Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•A flexible optimal experiment design framework is developed.•The optimized network provides sufficient information with high data worth.•The monitoring locations are optimized for enhancing plume characterization.•The test duration is selected with information entropy and parameter uncertainty. This study develops an integrated framework to guide the monitoring network optimization and duration selection for solute transport in heterogeneous sand tank experiments. The method is designed based on entropy and data worth analysis. Numerical models are applied to approach prior observation datasets and to support optimization analysis. Several candidate monitoring locations are synthetically assumed in numerical models. Entropy analysis considers local scale heterogeneity in experiment and identifies stable monitoring locations through extracting maximum information and minimizing optimization redundancies. Data worth analysis quantifies the potential of observation data to reduce the uncertainty of key parameters and selects the monitoring locations with higher data worth. Final monitoring network comprises of optimized monitoring locations obtained based on entropy and data worth analysis. A lab-scale tracer experiment is presented to explore the applicability of the proposed framework. Results show that the optimized monitoring network can accurately characterize the distribution of contaminant plumes in 3D domains and provides estimation of key flow and transport parameters (e.g., hydraulic conductivity and dispersivity). With the extension of experiment time, the total information of monitoring network is maximized, while the uncertainty of key parameters is minimized. The recommended experimental duration is the time by which both joint entropy and parameter variation coefficients are stabilized. Our developed methodology can be used as a flexible and powerful tool to design more complex transport experiments at different spatiotemporal scales.
ISSN:0022-1694
1879-2707
DOI:10.1016/j.jhydrol.2022.128541