Evaluating the cumulative and time-lag effects of drought on grassland vegetation: A case study in the Chinese Loess Plateau
The increased frequency of drought events in recent years is known to be responsible for significantly altering plant biodiversity in many of Earth's ecosystems, though the specifics of vegetation-drought interactions, especially the cumulative and time-lag responses, remains unclear. This stud...
Gespeichert in:
Veröffentlicht in: | Journal of environmental management 2020-05, Vol.261, p.110214-110214, Article 110214 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The increased frequency of drought events in recent years is known to be responsible for significantly altering plant biodiversity in many of Earth's ecosystems, though the specifics of vegetation-drought interactions, especially the cumulative and time-lag responses, remains unclear. This study aimed to quantitatively investigate how grassland vegetation over the Chinese Loess Plateau (CLP) reacts to drought, specifically the observed cumulative and time-lag effects which are caused, using a combination of the Normalized Difference Vegetation Index (NDVI) and a multiple time-scale drought index (Standardized Precipitation and Evapotranspiration Index, SPEI). Our results revealed that while drought conditions have widespread cumulative impacts on grass growth in the CLP, the time lag effect of drought covered about half of the total area of the CLP. The cumulative effect of drought on grass was found to take place over various time scales, ranging from 5 to 10 months, while the time lag effect occurred within 2–3 months. The different response time of vegetation growth to the cumulative effect of drought in the CLP was found to be highly related to different water conditions. The accumulated months and mean rmax-cum both had a significant negative correlation with the mean annual SPEI (R2 = 0.90, P |
---|---|
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2020.110214 |