On the generation of some Lie-type geometries
Let Xn(K) be a building of Coxeter type Xn=An or Xn=Dn defined over a given division ring K (a field when Xn=Dn). For a non-connected set J of nodes of the diagram Xn, let Γ(K)=GrJ(Xn(K)) be the J-grassmannian of Xn(K). We prove that Γ(K) cannot be generated over any proper sub-division ring K0 of K...
Gespeichert in:
Veröffentlicht in: | Journal of combinatorial theory. Series A 2023-01, Vol.193, p.105673, Article 105673 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Xn(K) be a building of Coxeter type Xn=An or Xn=Dn defined over a given division ring K (a field when Xn=Dn). For a non-connected set J of nodes of the diagram Xn, let Γ(K)=GrJ(Xn(K)) be the J-grassmannian of Xn(K). We prove that Γ(K) cannot be generated over any proper sub-division ring K0 of K. As a consequence, the generating rank of Γ(K) is infinite when K is not finitely generated. In particular, if K is the algebraic closure of a finite field of prime order then the generating rank of Gr1,n(An(K)) is infinite, although its embedding rank is either (n+1)2−1 or (n+1)2. |
---|---|
ISSN: | 0097-3165 1096-0899 |
DOI: | 10.1016/j.jcta.2022.105673 |