Strong uniqueness and alternation theorems for relative Chebyshev centers

In this paper, we give a strong uniqueness characterization theorem for the Chebyshev center of a set of infinitely many functions relative to a finite-dimensional linear space on a compact Hausdorff space. Additionally, we derive an alternation theorem for Chebyshev centers relative to a weak Cheby...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of approximation theory 2023-09, Vol.293, p.105917, Article 105917
Hauptverfasser: Levis, F.E., Ridolfi, C.V., Zabala, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we give a strong uniqueness characterization theorem for the Chebyshev center of a set of infinitely many functions relative to a finite-dimensional linear space on a compact Hausdorff space. Additionally, we derive an alternation theorem for Chebyshev centers relative to a weak Chebyshev space on any compact set of the real line. Furthermore, we show an intrinsic characterization of those linear spaces where an alternation theorem holds.
ISSN:0021-9045
1096-0430
DOI:10.1016/j.jat.2023.105917