Strong uniqueness and alternation theorems for relative Chebyshev centers
In this paper, we give a strong uniqueness characterization theorem for the Chebyshev center of a set of infinitely many functions relative to a finite-dimensional linear space on a compact Hausdorff space. Additionally, we derive an alternation theorem for Chebyshev centers relative to a weak Cheby...
Gespeichert in:
Veröffentlicht in: | Journal of approximation theory 2023-09, Vol.293, p.105917, Article 105917 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we give a strong uniqueness characterization theorem for the Chebyshev center of a set of infinitely many functions relative to a finite-dimensional linear space on a compact Hausdorff space. Additionally, we derive an alternation theorem for Chebyshev centers relative to a weak Chebyshev space on any compact set of the real line. Furthermore, we show an intrinsic characterization of those linear spaces where an alternation theorem holds. |
---|---|
ISSN: | 0021-9045 1096-0430 |
DOI: | 10.1016/j.jat.2023.105917 |