Towards a roadmap for space-based observations of the land sector for the UNFCCC global stocktake
Space-based remote sensing can make an important contribution toward monitoring greenhouse gas emissions and removals from the agriculture, forestry, and other land use (AFOLU) sector, and to understanding and addressing human-caused climate change through the UNFCCC Paris Agreement. Space agencies...
Gespeichert in:
Veröffentlicht in: | iScience 2023-04, Vol.26 (4), p.106489, Article 106489 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Space-based remote sensing can make an important contribution toward monitoring greenhouse gas emissions and removals from the agriculture, forestry, and other land use (AFOLU) sector, and to understanding and addressing human-caused climate change through the UNFCCC Paris Agreement. Space agencies have begun to coordinate their efforts to identify needs, collect and harmonize available data and efforts, and plan and maintain a long-term roadmap for observations. International cooperation is crucial in developing and realizing the roadmap, and the Committee on Earth Observation Satellites (CEOS) is a key coordinating driver of this effort. Here, we first identify the data and information that will be useful to support the global stocktake (GST) of the Paris Agreement. Then, the paper explains how existing and planned space-based capabilities and products can be used and combined, particularly in the land use sector, and provides a workflow for their harmonization and contribution to greenhouse gas inventories and assessments at the national and global level.
[Display omitted]
Earth sciences; Remote sensing; Land use |
---|---|
ISSN: | 2589-0042 2589-0042 |
DOI: | 10.1016/j.isci.2023.106489 |