Trivial colors in colorings of Kneser graphs
We show that any proper coloring of a Kneser graph KGn,k with n−2k+2 colors contains a trivial color class (i.e., a color class consisting of sets that all contain a fixed element), provided n>(2+ε)k2, where ε→0 as k→∞. This bound is essentially tight. This is a consequence of a more general resu...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2024-04, Vol.347 (4), p.113869, Article 113869 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that any proper coloring of a Kneser graph KGn,k with n−2k+2 colors contains a trivial color class (i.e., a color class consisting of sets that all contain a fixed element), provided n>(2+ε)k2, where ε→0 as k→∞. This bound is essentially tight. This is a consequence of a more general result on the minimum number of non-trivial color classes needed to properly color KGn,k. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2023.113869 |