Effect of 2-acrylamide-2-methylpropane sulfonic acid on the early strength enhancement of calcium silicate hydrate seed

Nanomaterials are becoming widely used in cement to enhance the properties of cement-based materials. Artificially synthesized nano-C-S-H serves as a nucleation site for the hydration product C–S–H gel, facilitating its formation. This is deemed as an early strength agent to effectively promote ceme...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cement & concrete composites 2024-05, Vol.149, p.105527, Article 105527
Hauptverfasser: Lei, Fengzhen, Lei, Lei, Kang, Yangyang, Shi, Caijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nanomaterials are becoming widely used in cement to enhance the properties of cement-based materials. Artificially synthesized nano-C-S-H serves as a nucleation site for the hydration product C–S–H gel, facilitating its formation. This is deemed as an early strength agent to effectively promote cement hydration. Introducing comb-like polycarboxylate ether (PCE) during the synthesis of C–S–H can effectively reduce the size of C–S–H, resulting in better early strength effects. In this study, the acid-ether ratio of PCE is set at 6:1, and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) substitutes acrylic acid (AA) at varying molar ratios to obtain modified PCE. Calcium silicate hydrate seed-polycarboxylate ether (C-S-Hs-PCE) is synthesized using co-precipitation technique. This study investigated impacts of AMPS on the particle size of C-S-Hs-PCE and the early strength of cement-based materials using dynamic light scattering analysis, total organic carbon analyzer, X-ray diffraction analysis, low-field nuclear magnetic resonance, scanning electronic microscopy, isothermal calorimeter, and compressive strength testing. The results show that the C-S-Hs-PCE, synthesized at an AMPS to AA molar ratio of 5:95, turns out to possess a reduced particle size compared to use of PCE without AMPS. This is pivotal in promoting the hydration of the silicate phase and the formation of calcium hydroxide and C–S–H gel in the paste, and thereby reducing the total porosity while improving the early mechanical strength of the mortar, especially within first 24 h.
ISSN:0958-9465
1873-393X
DOI:10.1016/j.cemconcomp.2024.105527