Elevated CO2 effect on the response of stomatal control and water use efficiency in amaranth and maize plants to progressive drought stress

Rising CO2 concentration ([CO2]) in the atmosphere may modulate the response of crop plants to drought stress. This study aimed to investigate the response of leaf gas exchange and plant growth of two C4 species representing both dicot (amaranth) and monocot (maize) to progressive drought under two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural water management 2022-05, Vol.266, p.107609, Article 107609
Hauptverfasser: Wei, Zhenhua, Abdelhakim, Lamis Osama Anwar, Fang, Liang, Peng, Xiaoying, Liu, Jie, Liu, Fulai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rising CO2 concentration ([CO2]) in the atmosphere may modulate the response of crop plants to drought stress. This study aimed to investigate the response of leaf gas exchange and plant growth of two C4 species representing both dicot (amaranth) and monocot (maize) to progressive drought under two different [CO2] (ambient (a[CO2], 400 ppm) and elevated (e[CO2], 800 ppm)). The soil water status in the pots was expressed as the fraction of transpirable soil water (FTSW). The results showed that as compared to a[CO2], e[CO2] significantly increased net photosynthetic rate (An) at non-stress condition (An max) for both species, while the increase was more pronounced in maize than in amaranth. Stomatal conductance (gs) at non-stress condition was significantly lower at e[CO2] in both species. The FTSW threshold, at which An starts to decrease, was higher in maize grown at e[CO2] than at a[CO2], whereas it was not affected in amaranth. In both species, gs decreased at higher FTSW threshold when grown at e[CO2] than at a[CO2]. e[CO2] decreased stomatal density (SD) in amaranth but increased it in maize; drought increased SD in amaranth but not in maize. Intrinsic water use efficiency (WUEi) was significantly enhanced by e[CO2] and drought stress at FTSW ranged from 0.0 to 0.6, particularly in maize. e[CO2] increased leaf area of well-watered plants in maize and decreased specific leaf area in amaranth. In amaranth, water consumption of well-watered plants was increased and plant WUE was decreased at e[CO2]. The varied responses of leaf gas exchange and WUE to soil water deficits and e[CO2] among the two C4 species imply their different mechanisms in stomatal control over carbon gain versus water loss in dicot and monocot plants, which is essentially important for selecting crop species and developing strategies to optimize crop WUE in a future drier and CO2-enriched climate. The more physiological and biochemical response from soil, stomatal to plant scale related to various environments would be considered in further investigation. •e[CO2] enhanced An and intrinsic WUE in both plants, especially maize.•e[CO2] sensitized both gs decrease during progressive drought.•e[CO2] decreased SLA and plant WUE in amaranth.
ISSN:0378-3774
1873-2283
DOI:10.1016/j.agwat.2022.107609