Electrospray ionization-voltage sweep-Ion mobility spectrometry for biomolecules and complex samples
Voltage Sweep Ion Mobility Spectrometry (VSIMS) has been applied to complex samples using electrospray ionization (ESI). The usable range of VSIMS has been extended from that obtained in previous studies where only volatile compounds were investigated. Using ESI, VSIMS was evaluated with compounds w...
Gespeichert in:
Veröffentlicht in: | International journal for ion mobility spectrometry 2014-12, Vol.17 (3-4), p.147-156 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Voltage Sweep Ion Mobility Spectrometry (VSIMS) has been applied to complex samples using electrospray ionization (ESI). The usable range of VSIMS has been extended from that obtained in previous studies where only volatile compounds were investigated. Using ESI, VSIMS was evaluated with compounds with reduced mobility values as low as 0.3 V
2
cm
−1
s
−1
. The primary advantage of VSIMS is to enable a drift time ion mobility spectrometer (DTIMS) to detect both fast and slow moving ions at optimal resolving power, thus improving the peak capacity. In this work ESI-VSIMS was applied to a series of small peptides and drugs spanning a large range of reduced mobility values in order to demonstrate ESI-VSIMS to separation. To demonstrate improved peak capacity of IMS with voltage scan operation, oligomers of silicone oil provided a series of evenly-spaced peaks, ranging in reduced mobility values from 0.85 to 0.3 V
2
cm
−1
s
−1
. The peak capacity of 61 for a standard IMS was improved to 102 when voltage sweep operation was employed. In addition, VSIMS increased the average resolving power of the DTIMS from 66 to 106 for silicone oil. |
---|---|
ISSN: | 1435-6163 1865-4584 |
DOI: | 10.1007/s12127-014-0155-7 |