Synthesis of High Pure Ti3AlC2 and Ti2AlC Powders from TiH2 Powders as Ti Source by Tube Furnace

Titanium aluminum carbide (Ti3AlC2 and Ti2AlC) powders were synthesized from TiH2 powders instead of Ti powders as Ti source by a tube furnace under argon atmosphere without preliminary dehydrogenation. 95 wt% pure Ti3AlC2 powders were synthesized from TiH2/1.IAl/2TiC at 1 450 ℃ for 120 min. High-pu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Wuhan University of Technology. Materials science edition 2013-10, Vol.28 (5), p.882-887
Hauptverfasser: Li, Liang, Zhou, Aiguo, Xu, Lin, Li, Zhengyang, Wang, Libo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Titanium aluminum carbide (Ti3AlC2 and Ti2AlC) powders were synthesized from TiH2 powders instead of Ti powders as Ti source by a tube furnace under argon atmosphere without preliminary dehydrogenation. 95 wt% pure Ti3AlC2 powders were synthesized from TiH2/1.IAl/2TiC at 1 450 ℃ for 120 min. High-purity Ti2AlC powders were also prepared from 3TiH2/1.5Al/C and 2TiH2/1.5Al/TiC powders at 1 400 ℃ for 120 min. The as-synthesized samples were porous and easy to be ground into powders. Sn or Si additives in starting materials increased the purity of synthesized Ti3AlC2 obviously and expanded the temperature range for the synthesis of Ti3AlC2. With Si or Sn as additives, high pure Ti3AlC2 was synthesized at 1 200℃ for 60 min from TiH2/x Si/Al/2TiC and TiH2/x Sn/Al/2TiC (x = 0.1, 0.2), respectively.
ISSN:1000-2413
1993-0437
DOI:10.1007/s11595-013-0786-2