On symplectic self-adjointness of Hamiltonian operator matrices
Symplectic self-adjointness of Hamiltonian operator matrices is studied, which is important to symplectic elasticity and optimal control. For the cases of diagonal domain and off-diagonal domain, necessary and sufficient conditions are shown. The proofs use Frobenius-Schur factorizations of unbounde...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2015-04, Vol.58 (4), p.821-828 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Symplectic self-adjointness of Hamiltonian operator matrices is studied, which is important to symplectic elasticity and optimal control. For the cases of diagonal domain and off-diagonal domain, necessary and sufficient conditions are shown. The proofs use Frobenius-Schur factorizations of unbounded operator matrices.Under additional assumptions, sufficient conditions based on perturbation method are obtained. The theory is applied to a problem in symplectic elasticity. |
---|---|
ISSN: | 1674-7283 1869-1862 |
DOI: | 10.1007/s11425-014-4876-1 |