On symplectic self-adjointness of Hamiltonian operator matrices

Symplectic self-adjointness of Hamiltonian operator matrices is studied, which is important to symplectic elasticity and optimal control. For the cases of diagonal domain and off-diagonal domain, necessary and sufficient conditions are shown. The proofs use Frobenius-Schur factorizations of unbounde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2015-04, Vol.58 (4), p.821-828
Hauptverfasser: Chen, Alatancang, Jin, GuoHai, Wu, DeYu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Symplectic self-adjointness of Hamiltonian operator matrices is studied, which is important to symplectic elasticity and optimal control. For the cases of diagonal domain and off-diagonal domain, necessary and sufficient conditions are shown. The proofs use Frobenius-Schur factorizations of unbounded operator matrices.Under additional assumptions, sufficient conditions based on perturbation method are obtained. The theory is applied to a problem in symplectic elasticity.
ISSN:1674-7283
1869-1862
DOI:10.1007/s11425-014-4876-1