On the Continuity of Granulometry

One of the most fundamental operators of mathematical morphology, the granulometry operator Ψ t assigning to a compact set (or to a grayscale function) its granulometric opening by a convex set, is generally considered to be upper semicontinuous but not continuous. We consider this a deficiency and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical imaging and vision 2013-05, Vol.46 (1), p.29-43
1. Verfasser: Günther, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One of the most fundamental operators of mathematical morphology, the granulometry operator Ψ t assigning to a compact set (or to a grayscale function) its granulometric opening by a convex set, is generally considered to be upper semicontinuous but not continuous. We consider this a deficiency and intend to rectify it, mainly by an adjustment of convergence assumptions.
ISSN:0924-9907
1573-7683
DOI:10.1007/s10851-012-0364-9