On the Continuity of Granulometry
One of the most fundamental operators of mathematical morphology, the granulometry operator Ψ t assigning to a compact set (or to a grayscale function) its granulometric opening by a convex set, is generally considered to be upper semicontinuous but not continuous. We consider this a deficiency and...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical imaging and vision 2013-05, Vol.46 (1), p.29-43 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the most fundamental operators of mathematical morphology, the granulometry operator
Ψ
t
assigning to a compact set (or to a grayscale function) its granulometric opening by a convex set, is generally considered to be upper semicontinuous but not continuous. We consider this a deficiency and intend to rectify it, mainly by an adjustment of convergence assumptions. |
---|---|
ISSN: | 0924-9907 1573-7683 |
DOI: | 10.1007/s10851-012-0364-9 |