Investigate the energy–environmental indices for pomegranate molasses production: evidence from Isfahan, Iran

Today, the study and analysis of energy and environmental pollutants in agricultural lands, greenhouses and gardens alone cannot be effective in relation to the efficiency of agricultural products. Therefore, in the post-harvest stages, two issues of energy and environment are addressed. Based on th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environment, development and sustainability development and sustainability, 2024-03, Vol.26 (3), p.6109-6129
Hauptverfasser: Lotfalian Dehkordi, Amin, Shadmanfar, Somaye
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Today, the study and analysis of energy and environmental pollutants in agricultural lands, greenhouses and gardens alone cannot be effective in relation to the efficiency of agricultural products. Therefore, in the post-harvest stages, two issues of energy and environment are addressed. Based on this, the current research was conducted with the aim of investigating the energy–environmental indicators of pomegranate paste production in Iran. The results showed that the total energy input, energy ratio (ER) and energy productivity (EP) were calculated as 35,027 MJ/ton, 0.103 and 0.0002 tons of paste/total cycle energy, respectively. Energy required to produce paste bottles and pomegranate energy (chemical fertilizers and diesel fuel) for processing were the most consumed inputs in the study areas with 13,500 (38%) and 13,131 (37%) MJ.t −1 , respectively. Life cycle assessment (LCA) and the IMPACT 2002+ method were used to calculate the environmental effects, and 1 ton of pomegranate paste produced was determined as a functional unit (FU). Based on the findings obtained from the environmental section, the polyethylene bottles production had the highest emissions on the ecosystem quality (EQ), human health (HT), climate change (CC) and resources reduction (RR) damage categories as 94%, 72%, 71% and 92%, respectively. Based on the normalization results, HH, CC, RR and EQ have the highest values with 126.63, 78.23, 54.94 and 3.71, respectively. Also, the final impact was calculated as 263.53 pPt t −1 , and HH had the highest contributions to it. Results taken from the post-harvest section (specially packaging) confirmed the requisiteness of agricultural crops whole cycle investigation (cradle-to-grave analysis). The findings show that by reducing fossil and non-renewable inputs (chemical fertilizers, electricity and diesel fuel) and replacing them with clean energy, it is possible to achieve sustainability in product production. By managing the consumption of inputs, organic products with high-energy efficiency can be produced and the world can use its economic and social benefits.
ISSN:1387-585X
1573-2975
DOI:10.1007/s10668-023-02952-4