On automorphism groups of divisible designs acting regularly on the set of point classes
Let ( P , B ) be an ( m , u , k , λ ) -divisible design and let G be a subgroup of Aut ( P , B ) . We say G is an SCT ( m , u , k , λ ) automorphism group of ( P , B ) if G is semiregular on P ∪ B and regular on the set of point classes of ( P , B ) . In this paper we show that each SCT ( m , u , k...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2016-05, Vol.79 (2), p.319-335 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
P
,
B
)
be an
(
m
,
u
,
k
,
λ
)
-divisible design and let
G
be a subgroup of
Aut
(
P
,
B
)
. We say
G
is an SCT
(
m
,
u
,
k
,
λ
)
automorphism group of
(
P
,
B
)
if
G
is semiregular on
P
∪
B
and regular on the set of point classes of
(
P
,
B
)
. In this paper we show that each
SCT
(
m
,
u
,
k
,
λ
)
automorphism group corresponds to a certain special kind of matrix, which we call an
SCT
(
m
,
u
,
k
,
λ
)
matrix over
G
. Using such matrices we construct
(
m
,
u
,
k
,
λ
)
-divisible designs. We also consider the close connection between SCT automorphism groups and relative difference sets. As an application we generalize the notion of planar functions and show that an arbitrary
p
-group may be the forbidden subgroup of a semiregular relative difference set. |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-015-0054-x |