On automorphism groups of divisible designs acting regularly on the set of point classes

Let ( P , B ) be an ( m , u , k , λ ) -divisible design and let G be a subgroup of Aut ( P , B ) . We say G is an SCT ( m , u , k , λ ) automorphism group of ( P , B ) if G is semiregular on P ∪ B and regular on the set of point classes of ( P , B ) . In this paper we show that each SCT ( m , u , k...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Designs, codes, and cryptography codes, and cryptography, 2016-05, Vol.79 (2), p.319-335
1. Verfasser: Hiramine, Yutaka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( P , B ) be an ( m , u , k , λ ) -divisible design and let G be a subgroup of Aut ( P , B ) . We say G is an SCT ( m , u , k , λ ) automorphism group of ( P , B ) if G is semiregular on P ∪ B and regular on the set of point classes of ( P , B ) . In this paper we show that each SCT ( m , u , k , λ ) automorphism group corresponds to a certain special kind of matrix, which we call an SCT ( m , u , k , λ ) matrix over G . Using such matrices we construct ( m , u , k , λ ) -divisible designs. We also consider the close connection between SCT automorphism groups and relative difference sets. As an application we generalize the notion of planar functions and show that an arbitrary p -group may be the forbidden subgroup of a semiregular relative difference set.
ISSN:0925-1022
1573-7586
DOI:10.1007/s10623-015-0054-x