On Objects with a Semilocal Endomorphism Rings in Finitely Accessible Additive Categories

It is proved that if A is an object in a finitely accessible additive category A such that A has finite pure Goldie dimension and that every pure monomorphism A → A is an isomorphism, then its endomorphism ring En d A ( A ) is semilocal.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebras and representation theory 2015-10, Vol.18 (5), p.1389-1393
1. Verfasser: Berktaş, Mustafa Kemal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It is proved that if A is an object in a finitely accessible additive category A such that A has finite pure Goldie dimension and that every pure monomorphism A → A is an isomorphism, then its endomorphism ring En d A ( A ) is semilocal.
ISSN:1386-923X
1572-9079
DOI:10.1007/s10468-015-9545-8