On Objects with a Semilocal Endomorphism Rings in Finitely Accessible Additive Categories
It is proved that if A is an object in a finitely accessible additive category A such that A has finite pure Goldie dimension and that every pure monomorphism A → A is an isomorphism, then its endomorphism ring En d A ( A ) is semilocal.
Gespeichert in:
Veröffentlicht in: | Algebras and representation theory 2015-10, Vol.18 (5), p.1389-1393 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is proved that if
A
is an object in a finitely accessible additive category
A
such that
A
has finite pure Goldie dimension and that every pure monomorphism
A
→
A
is an isomorphism, then its endomorphism ring
En
d
A
(
A
)
is semilocal. |
---|---|
ISSN: | 1386-923X 1572-9079 |
DOI: | 10.1007/s10468-015-9545-8 |