Well-posedness and analyticity of the Cauchy problem for the multi-component Novikov equation
In this paper, we are concerned with the Cauchy problem of the multi-component Novikov equation. We establish the local well-posedness in a range of the Besov spaces by using Littlewood–Paley decomposition and transport equation theory. Moreover, with analytic initial data, we show that its solution...
Gespeichert in:
Veröffentlicht in: | Monatshefte für Mathematik 2020-02, Vol.191 (2), p.295-323 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we are concerned with the Cauchy problem of the multi-component Novikov equation. We establish the local well-posedness in a range of the Besov spaces by using Littlewood–Paley decomposition and transport equation theory. Moreover, with analytic initial data, we show that its solutions are analytic in both variables, globally in space and locally in time. |
---|---|
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-019-01297-3 |