Constant-sign and sign-changing solutions for the Sturm–Liouville boundary value problems

In this paper, we study the Strum–Liouville boundary value problem - ( p ( x ) u ′ ( x ) ) ′ + q ( x ) u ( x ) = f ( x , u ( x ) ) , 0 ≤ x ≤ 1 , α u ′ ( 0 ) - β u ( 0 ) = 0 , γ u ′ ( 1 ) + σ u ( 1 ) = 0 . Using critical point theory and suitable truncation techniques, we prove the existence of two o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monatshefte für Mathematik 2016-01, Vol.179 (1), p.41-55
Hauptverfasser: He, Tieshan, Sun, Zhaohong, Yan, Hongming, Lu, Yimin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the Strum–Liouville boundary value problem - ( p ( x ) u ′ ( x ) ) ′ + q ( x ) u ( x ) = f ( x , u ( x ) ) , 0 ≤ x ≤ 1 , α u ′ ( 0 ) - β u ( 0 ) = 0 , γ u ′ ( 1 ) + σ u ( 1 ) = 0 . Using critical point theory and suitable truncation techniques, we prove the existence of two opposite constant sign solutions and infinitely many sign-changing solutions of the problem. Different from the existing research, we do not impose any restrictions to the behavior of the nonlinear term f at infinity.
ISSN:0026-9255
1436-5081
DOI:10.1007/s00605-014-0694-3