Multi-objectives TLBO hybrid method to select the related risk features with rheumatism disease

Features subset selection was commonly used in data mining and artificial intelligence techniques to produce a model with a minimal set of features that enhances the performance of the classifier. The essential motive for selecting features is to avoid the problem of a number of dimensions trap. Thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2021-08, Vol.33 (15), p.9025-9034
Hauptverfasser: Sameer, Fadhaa O., Al-obaidi, Mohammed. J., Al-bassam, Wasan W., Ad’hiah, Ali H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Features subset selection was commonly used in data mining and artificial intelligence techniques to produce a model with a minimal set of features that enhances the performance of the classifier. The essential motive for selecting features is to avoid the problem of a number of dimensions trap. This paper introduces a new technique of selection of features dependent on the modified of binary teaching–learning-based optimization and the suggested method called MBTLBO. This algorithm (teaching learning-based optimization TLBO) is one of the present metaheuristic that is been widely utilized to a several of intractable optimization issues in recent times. Such algorithm has been combined with supervised data mining technique (support vector machine) for the implementation of feature subset selection problem in binary identification. The collection of specific risk features with the rheumatic disease was implemented. The findings revealed that the new approach (MBTLBO) increases the accuracy of classification.
ISSN:0941-0643
1433-3058
DOI:10.1007/s00521-020-05665-1