Boltzmann Model for Viscoelastic Particles: Asymptotic Behavior, Pointwise Lower Bounds and Regularity

We investigate the long-time behavior of a system of viscoelastic particles modeled with the homogeneous Boltzmann equation. We prove the existence of a universal Maxwellian intermediate asymptotic state with explicit rate of convergence towards it. Exponential lower pointwise bounds and propagation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2014-10, Vol.331 (2), p.545-591
Hauptverfasser: Alonso, R., Lods, B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the long-time behavior of a system of viscoelastic particles modeled with the homogeneous Boltzmann equation. We prove the existence of a universal Maxwellian intermediate asymptotic state with explicit rate of convergence towards it. Exponential lower pointwise bounds and propagation of regularity are also studied. These results can be seen as a generalization of several classical results holding for the pseudo-Maxwellian and constant normal restitution models.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-014-2089-7