Boltzmann Model for Viscoelastic Particles: Asymptotic Behavior, Pointwise Lower Bounds and Regularity
We investigate the long-time behavior of a system of viscoelastic particles modeled with the homogeneous Boltzmann equation. We prove the existence of a universal Maxwellian intermediate asymptotic state with explicit rate of convergence towards it. Exponential lower pointwise bounds and propagation...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2014-10, Vol.331 (2), p.545-591 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the long-time behavior of a system of viscoelastic particles modeled with the homogeneous Boltzmann equation. We prove the existence of a universal Maxwellian intermediate asymptotic state with explicit rate of convergence towards it. Exponential lower pointwise bounds and propagation of regularity are also studied. These results can be seen as a generalization of several classical results holding for the pseudo-Maxwellian and constant normal restitution models. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-014-2089-7 |