Long Time Energy Transfer in the Random Schrödinger Equation

We consider the long time behavior of solutions of the d -dimensional linear Boltzmann equation that arises in the weak coupling limit for the Schrödinger equation with a time-dependent random potential. We show that the intermediate mesoscopic time limit satisfies a Fokker–Planck type equation with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2014-08, Vol.329 (3), p.1131-1170
Hauptverfasser: Komorowski, Tomasz, Ryzhik, Lenya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the long time behavior of solutions of the d -dimensional linear Boltzmann equation that arises in the weak coupling limit for the Schrödinger equation with a time-dependent random potential. We show that the intermediate mesoscopic time limit satisfies a Fokker–Planck type equation with the wave vector performing a Brownian motion on the ( d − 1)-dimensional sphere of constant energy, as in the case of a time-independent Schrödinger equation. However, the long time limit of the solution with an isotropic initial data satisfies an equation corresponding to the energy being the square root of a Bessel process of dimension d /2.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-014-1999-8