Asymptotic Number of Scattering Resonances for Generic Schrödinger Operators

Let −Δ +  V be the Schrödinger operator acting on L 2 ( R d , C ) with d ≥ 3 odd. Here V is a bounded real or complex function vanishing outside the closed ball of center 0 and of radius a . Let n V ( r ) denote the number of resonances of −Δ +  V with modulus ≤  r . We show that if the potential V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2014-02, Vol.326 (1), p.185-208
Hauptverfasser: Dinh, Tien-Cuong, Vu, Duc-Viet
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let −Δ +  V be the Schrödinger operator acting on L 2 ( R d , C ) with d ≥ 3 odd. Here V is a bounded real or complex function vanishing outside the closed ball of center 0 and of radius a . Let n V ( r ) denote the number of resonances of −Δ +  V with modulus ≤  r . We show that if the potential V is generic in a sense of pluripotential theory then n V ( r ) = c d a d r d + O ( r d - 3 16 + ϵ ) as r → ∞ for any ε > 0, where c d is a dimensional constant.
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-013-1842-7