Asymptotic Number of Scattering Resonances for Generic Schrödinger Operators
Let −Δ + V be the Schrödinger operator acting on L 2 ( R d , C ) with d ≥ 3 odd. Here V is a bounded real or complex function vanishing outside the closed ball of center 0 and of radius a . Let n V ( r ) denote the number of resonances of −Δ + V with modulus ≤ r . We show that if the potential V...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2014-02, Vol.326 (1), p.185-208 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let −Δ +
V
be the Schrödinger operator acting on
L
2
(
R
d
,
C
)
with
d
≥
3
odd. Here
V
is a bounded real or complex function vanishing outside the closed ball of center 0 and of radius
a
. Let
n
V
(
r
) denote the number of resonances of −Δ +
V
with modulus ≤
r
. We show that if the potential
V
is generic in a sense of pluripotential theory then
n
V
(
r
)
=
c
d
a
d
r
d
+
O
(
r
d
-
3
16
+
ϵ
)
as
r
→
∞
for any ε > 0, where
c
d
is a dimensional constant. |
---|---|
ISSN: | 0010-3616 1432-0916 |
DOI: | 10.1007/s00220-013-1842-7 |