Convergence of Runge-Kutta approximations for parabolic problems with Neumann boundary conditions

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 1997-07, Vol.77 (1), p.123-142
1. Verfasser: ZOURARIS, G. E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 1
container_start_page 123
container_title Numerische Mathematik
container_volume 77
creator ZOURARIS, G. E
description
doi_str_mv 10.1007/s002110050281
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_s002110050281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2800709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-a30a257ebf3f44d455aea2bb5b4bcc286ceaf21493c91fa536f8250fd2e091a23</originalsourceid><addsrcrecordid>eNpVkM1LAzEUxIMoWKtH7zl4XX35ajdHKWrFoiAK3paXbFJXtsmS7Kr9712tCJ5mYOb3eAwhpwzOGcD8IgNwNjoFvGR7ZAJaqkJwqfZHD1wXSuuXQ3KU8xsAm88kmxBcxPDu0toF62j09HEIa1fcDX2PFLsuxc9mg30TQ6Y-JtphQhPbxtIxMq3bZPrR9K_03g0bDIGaOIQa05baGOrmhzsmBx7b7E5-dUqer6-eFsti9XBzu7hcFZZz6AsUgFzNnfHCS1lLpdAhN0YZaazl5cw69JxJLaxmHpWY-ZIr8DV3oBlyMSXF7q5NMefkfNWl8fe0rRhU3_tU__YZ-2e7fofZYusTBtvkP4iXIwJafAHiOWdQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Convergence of Runge-Kutta approximations for parabolic problems with Neumann boundary conditions</title><source>SpringerLink Journals - AutoHoldings</source><creator>ZOURARIS, G. E</creator><creatorcontrib>ZOURARIS, G. E</creatorcontrib><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s002110050281</identifier><identifier>CODEN: NUMMA7</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, initial value problems and time-dependant initial-boundary value problems ; Sciences and techniques of general use</subject><ispartof>Numerische Mathematik, 1997-07, Vol.77 (1), p.123-142</ispartof><rights>1997 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=2800709$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>ZOURARIS, G. E</creatorcontrib><title>Convergence of Runge-Kutta approximations for parabolic problems with Neumann boundary conditions</title><title>Numerische Mathematik</title><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</subject><subject>Sciences and techniques of general use</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNpVkM1LAzEUxIMoWKtH7zl4XX35ajdHKWrFoiAK3paXbFJXtsmS7Kr9712tCJ5mYOb3eAwhpwzOGcD8IgNwNjoFvGR7ZAJaqkJwqfZHD1wXSuuXQ3KU8xsAm88kmxBcxPDu0toF62j09HEIa1fcDX2PFLsuxc9mg30TQ6Y-JtphQhPbxtIxMq3bZPrR9K_03g0bDIGaOIQa05baGOrmhzsmBx7b7E5-dUqer6-eFsti9XBzu7hcFZZz6AsUgFzNnfHCS1lLpdAhN0YZaazl5cw69JxJLaxmHpWY-ZIr8DV3oBlyMSXF7q5NMefkfNWl8fe0rRhU3_tU__YZ-2e7fofZYusTBtvkP4iXIwJafAHiOWdQ</recordid><startdate>19970701</startdate><enddate>19970701</enddate><creator>ZOURARIS, G. E</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19970701</creationdate><title>Convergence of Runge-Kutta approximations for parabolic problems with Neumann boundary conditions</title><author>ZOURARIS, G. E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-a30a257ebf3f44d455aea2bb5b4bcc286ceaf21493c91fa536f8250fd2e091a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, initial value problems and time-dependant initial-boundary value problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ZOURARIS, G. E</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ZOURARIS, G. E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence of Runge-Kutta approximations for parabolic problems with Neumann boundary conditions</atitle><jtitle>Numerische Mathematik</jtitle><date>1997-07-01</date><risdate>1997</risdate><volume>77</volume><issue>1</issue><spage>123</spage><epage>142</epage><pages>123-142</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><coden>NUMMA7</coden><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/s002110050281</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 1997-07, Vol.77 (1), p.123-142
issn 0029-599X
0945-3245
language eng
recordid cdi_crossref_primary_10_1007_s002110050281
source SpringerLink Journals - AutoHoldings
subjects Exact sciences and technology
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
title Convergence of Runge-Kutta approximations for parabolic problems with Neumann boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A57%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20of%20Runge-Kutta%20approximations%20for%20parabolic%20problems%20with%20Neumann%20boundary%20conditions&rft.jtitle=Numerische%20Mathematik&rft.au=ZOURARIS,%20G.%20E&rft.date=1997-07-01&rft.volume=77&rft.issue=1&rft.spage=123&rft.epage=142&rft.pages=123-142&rft.issn=0029-599X&rft.eissn=0945-3245&rft.coden=NUMMA7&rft_id=info:doi/10.1007/s002110050281&rft_dat=%3Cpascalfrancis_cross%3E2800709%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true