Embedding formalism for $$ \mathcal{N} $$-extended AdS superspace in four dimensions
The supertwistor and bi-supertwistor formulations for $$ \mathcal{N} $$ N -extended anti-de Sitter (AdS) superspace in four dimensions, $$ Ad{S}^{4\mid 4\mathcal{N}} $$ Ad S 4 ∣ 4 N , were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the $$ \mathcal{N} $$ N...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2023-11, Vol.2023 (11), Article 63 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | The journal of high energy physics |
container_volume | 2023 |
creator | Koning, Nowar E. Kuzenko, Sergei M. Raptakis, Emmanouil S. N. |
description | The supertwistor and bi-supertwistor formulations for
$$ \mathcal{N} $$
N
-extended anti-de Sitter (AdS) superspace in four dimensions,
$$ Ad{S}^{4\mid 4\mathcal{N}} $$
Ad
S
4
∣
4
N
, were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the
$$ \mathcal{N} $$
N
-extended AdS supergroup OSp(
$$ \mathcal{N} $$
N
|4;
ℝ
) and apply it to develop a coset construction for
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
and the corresponding differential geometry. This realisation naturally leads to an atlas on
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
(that is a generalisation of the stereographic projection for a sphere) that consists of two charts with chiral transition functions for
$$ \mathcal{N} $$
N
> 0. A manifestly OSp(
$$ \mathcal{N} $$
N
|4;
ℝ
) invariant model for a superparticle in
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
is proposed. Additionally, by employing a conformal superspace approach, we describe the most general conformally flat
$$ \mathcal{N} $$
N
-extended supergeometry. This construction is then specialised to the case of
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
. |
doi_str_mv | 10.1007/JHEP11(2023)063 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_JHEP11_2023_063</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_JHEP11_2023_063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1273-84a555c350d0bfd82c10dd05f523f21d957ae056587c47b3cb5923456c6ccc5c3</originalsourceid><addsrcrecordid>eNpNkM9LwzAcxYMoOKdnrznsoIe6b5KmaY9jdE4ZKjhvQknzQyNNW5INFPF_t2UePL33Du_x-CB0SeCGAIj5_bp8IuSKAmXXkLEjNCFAiyRPRXH8z5-isxg_AAgnBUzQtvS10dq1b9h2wcvGRT86PJvhVy9370o23w8_Q0zM58602mi80M847nsTYi-Vwa4dCvuAtfOmja5r4zk6sbKJ5uJPp-hlVW6X62TzeHu3XGwSRahgwx3JOVeMg4ba6pwqAloDt5wyS4kuuJAGeMZzoVJRM1XzgrKUZypTSg3FKZofdlXoYgzGVn1wXoavikA1QqkOUKoRSjVAYb_pulQC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Embedding formalism for $$ \mathcal{N} $$-extended AdS superspace in four dimensions</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Koning, Nowar E. ; Kuzenko, Sergei M. ; Raptakis, Emmanouil S. N.</creator><creatorcontrib>Koning, Nowar E. ; Kuzenko, Sergei M. ; Raptakis, Emmanouil S. N.</creatorcontrib><description>The supertwistor and bi-supertwistor formulations for
$$ \mathcal{N} $$
N
-extended anti-de Sitter (AdS) superspace in four dimensions,
$$ Ad{S}^{4\mid 4\mathcal{N}} $$
Ad
S
4
∣
4
N
, were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the
$$ \mathcal{N} $$
N
-extended AdS supergroup OSp(
$$ \mathcal{N} $$
N
|4;
ℝ
) and apply it to develop a coset construction for
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
and the corresponding differential geometry. This realisation naturally leads to an atlas on
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
(that is a generalisation of the stereographic projection for a sphere) that consists of two charts with chiral transition functions for
$$ \mathcal{N} $$
N
> 0. A manifestly OSp(
$$ \mathcal{N} $$
N
|4;
ℝ
) invariant model for a superparticle in
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
is proposed. Additionally, by employing a conformal superspace approach, we describe the most general conformally flat
$$ \mathcal{N} $$
N
-extended supergeometry. This construction is then specialised to the case of
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP11(2023)063</identifier><language>eng</language><ispartof>The journal of high energy physics, 2023-11, Vol.2023 (11), Article 63</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1273-84a555c350d0bfd82c10dd05f523f21d957ae056587c47b3cb5923456c6ccc5c3</citedby><cites>FETCH-LOGICAL-c1273-84a555c350d0bfd82c10dd05f523f21d957ae056587c47b3cb5923456c6ccc5c3</cites><orcidid>0000-0001-9961-4149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Koning, Nowar E.</creatorcontrib><creatorcontrib>Kuzenko, Sergei M.</creatorcontrib><creatorcontrib>Raptakis, Emmanouil S. N.</creatorcontrib><title>Embedding formalism for $$ \mathcal{N} $$-extended AdS superspace in four dimensions</title><title>The journal of high energy physics</title><description>The supertwistor and bi-supertwistor formulations for
$$ \mathcal{N} $$
N
-extended anti-de Sitter (AdS) superspace in four dimensions,
$$ Ad{S}^{4\mid 4\mathcal{N}} $$
Ad
S
4
∣
4
N
, were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the
$$ \mathcal{N} $$
N
-extended AdS supergroup OSp(
$$ \mathcal{N} $$
N
|4;
ℝ
) and apply it to develop a coset construction for
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
and the corresponding differential geometry. This realisation naturally leads to an atlas on
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
(that is a generalisation of the stereographic projection for a sphere) that consists of two charts with chiral transition functions for
$$ \mathcal{N} $$
N
> 0. A manifestly OSp(
$$ \mathcal{N} $$
N
|4;
ℝ
) invariant model for a superparticle in
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
is proposed. Additionally, by employing a conformal superspace approach, we describe the most general conformally flat
$$ \mathcal{N} $$
N
-extended supergeometry. This construction is then specialised to the case of
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
.</description><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAcxYMoOKdnrznsoIe6b5KmaY9jdE4ZKjhvQknzQyNNW5INFPF_t2UePL33Du_x-CB0SeCGAIj5_bp8IuSKAmXXkLEjNCFAiyRPRXH8z5-isxg_AAgnBUzQtvS10dq1b9h2wcvGRT86PJvhVy9370o23w8_Q0zM58602mi80M847nsTYi-Vwa4dCvuAtfOmja5r4zk6sbKJ5uJPp-hlVW6X62TzeHu3XGwSRahgwx3JOVeMg4ba6pwqAloDt5wyS4kuuJAGeMZzoVJRM1XzgrKUZypTSg3FKZofdlXoYgzGVn1wXoavikA1QqkOUKoRSjVAYb_pulQC</recordid><startdate>20231110</startdate><enddate>20231110</enddate><creator>Koning, Nowar E.</creator><creator>Kuzenko, Sergei M.</creator><creator>Raptakis, Emmanouil S. N.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9961-4149</orcidid></search><sort><creationdate>20231110</creationdate><title>Embedding formalism for $$ \mathcal{N} $$-extended AdS superspace in four dimensions</title><author>Koning, Nowar E. ; Kuzenko, Sergei M. ; Raptakis, Emmanouil S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1273-84a555c350d0bfd82c10dd05f523f21d957ae056587c47b3cb5923456c6ccc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koning, Nowar E.</creatorcontrib><creatorcontrib>Kuzenko, Sergei M.</creatorcontrib><creatorcontrib>Raptakis, Emmanouil S. N.</creatorcontrib><collection>CrossRef</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koning, Nowar E.</au><au>Kuzenko, Sergei M.</au><au>Raptakis, Emmanouil S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedding formalism for $$ \mathcal{N} $$-extended AdS superspace in four dimensions</atitle><jtitle>The journal of high energy physics</jtitle><date>2023-11-10</date><risdate>2023</risdate><volume>2023</volume><issue>11</issue><artnum>63</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>The supertwistor and bi-supertwistor formulations for
$$ \mathcal{N} $$
N
-extended anti-de Sitter (AdS) superspace in four dimensions,
$$ Ad{S}^{4\mid 4\mathcal{N}} $$
Ad
S
4
∣
4
N
, were derived two years ago in [1]. In the present paper, we introduce a novel realisation of the
$$ \mathcal{N} $$
N
-extended AdS supergroup OSp(
$$ \mathcal{N} $$
N
|4;
ℝ
) and apply it to develop a coset construction for
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
and the corresponding differential geometry. This realisation naturally leads to an atlas on
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
(that is a generalisation of the stereographic projection for a sphere) that consists of two charts with chiral transition functions for
$$ \mathcal{N} $$
N
> 0. A manifestly OSp(
$$ \mathcal{N} $$
N
|4;
ℝ
) invariant model for a superparticle in
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
is proposed. Additionally, by employing a conformal superspace approach, we describe the most general conformally flat
$$ \mathcal{N} $$
N
-extended supergeometry. This construction is then specialised to the case of
$$ {\textrm{AdS}}^{4\mid 4\mathcal{N}} $$
AdS
4
∣
4
N
.</abstract><doi>10.1007/JHEP11(2023)063</doi><orcidid>https://orcid.org/0000-0001-9961-4149</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2023-11, Vol.2023 (11), Article 63 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_crossref_primary_10_1007_JHEP11_2023_063 |
source | DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Embedding formalism for $$ \mathcal{N} $$-extended AdS superspace in four dimensions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T04%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedding%20formalism%20for%20$$%20%5Cmathcal%7BN%7D%20$$-extended%20AdS%20superspace%20in%20four%20dimensions&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Koning,%20Nowar%20E.&rft.date=2023-11-10&rft.volume=2023&rft.issue=11&rft.artnum=63&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP11(2023)063&rft_dat=%3Ccrossref%3E10_1007_JHEP11_2023_063%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |