3d-3d correspondence for mapping tori

A bstract One of the main challenges in 3d-3d correspondence is that no existent approach offers a complete description of 3d N = 2 SCFT T [ M 3 ] — or, rather, a “collection of SCFTs” as we refer to it in the paper — for all types of 3-manifolds that include, for example, a 3-torus, Brieskorn spher...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-09, Vol.2020 (9), p.1-60, Article 152
Hauptverfasser: Chun, Sungbong, Gukov, Sergei, Park, Sunghyuk, Sopenko, Nikita
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 60
container_issue 9
container_start_page 1
container_title The journal of high energy physics
container_volume 2020
creator Chun, Sungbong
Gukov, Sergei
Park, Sunghyuk
Sopenko, Nikita
description A bstract One of the main challenges in 3d-3d correspondence is that no existent approach offers a complete description of 3d N = 2 SCFT T [ M 3 ] — or, rather, a “collection of SCFTs” as we refer to it in the paper — for all types of 3-manifolds that include, for example, a 3-torus, Brieskorn spheres, and hyperbolic surgeries on knots. The goal of this paper is to overcome this challenge by a more systematic study of 3d-3d correspondence that, first of all, does not rely heavily on any geometric structure on M 3 and, secondly, is not limited to a particular supersymmetric partition function of T [ M 3 ]. In particular, we propose to describe such “collection of SCFTs” in terms of 3d N = 2 gauge theories with “non-linear matter” fields valued in complex group manifolds. As a result, we are able to recover familiar 3-manifold invariants, such as Turaev torsion and WRT invariants, from twisted indices and half-indices of T [ M 3 ], and propose new tools to compute more recent q -series invariants Z ̂ ( M 3 ) in the case of manifolds with b 1 > 0. Although we use genus-1 mapping tori as our “case study,” many results and techniques readily apply to more general 3-manifolds, as we illustrate throughout the paper.
doi_str_mv 10.1007/JHEP09(2020)152
format Article
fullrecord <record><control><sourceid>webofscience_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_JHEP09_2020_152</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a67822bd00c44ddd8dff10668b34cb1b</doaj_id><sourcerecordid>000576402700001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-2fa63f480f123c5fdc83f8a6951167e9c0c6a982a30d56b75709da812dc0f7d13</originalsourceid><addsrcrecordid>eNqNkM9LwzAYhosoOKdnr0MQFKn7krZJepQynTLQg55Dmh8zY0tGkiH-97ZWhhfBUz7C-z7fx5Nl5whuEQCdPs1nL1BfYcBwjSp8kI0Q4DpnJa0Pf83H2UmMKwBUoRpG2WWh8kJNpA9Bx613SjupJ8aHyUZst9YtJ8kHe5odGbGO-uznHWdv97PXZp4vnh8em7tFLkuCU46NIIUpGRiEC1kZJVlhmCB1hRChupYgiagZFgWoirS0olArwRBWEgxVqBhnjwNXebHi22A3InxyLyz__vBhyUVIVq41F4QyjFsFIMtSKcWUMQgIYW1Ryha1HetiYPmYLI_SJi3fpXdOy8QRBUJRv3A6hGTwMQZt9ksR8F4rH7TyXivvtHaNm6HxoVtvOmwvbN8CgIqSEjDtJuj57P_pxiaRrHeN37nUVWGoxi7uljrwld8F1-n_87YvymOX6w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3d-3d correspondence for mapping tori</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Chun, Sungbong ; Gukov, Sergei ; Park, Sunghyuk ; Sopenko, Nikita</creator><creatorcontrib>Chun, Sungbong ; Gukov, Sergei ; Park, Sunghyuk ; Sopenko, Nikita ; Rutgers Univ., Piscataway, NJ (United States) ; California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><description>A bstract One of the main challenges in 3d-3d correspondence is that no existent approach offers a complete description of 3d N = 2 SCFT T [ M 3 ] — or, rather, a “collection of SCFTs” as we refer to it in the paper — for all types of 3-manifolds that include, for example, a 3-torus, Brieskorn spheres, and hyperbolic surgeries on knots. The goal of this paper is to overcome this challenge by a more systematic study of 3d-3d correspondence that, first of all, does not rely heavily on any geometric structure on M 3 and, secondly, is not limited to a particular supersymmetric partition function of T [ M 3 ]. In particular, we propose to describe such “collection of SCFTs” in terms of 3d N = 2 gauge theories with “non-linear matter” fields valued in complex group manifolds. As a result, we are able to recover familiar 3-manifold invariants, such as Turaev torsion and WRT invariants, from twisted indices and half-indices of T [ M 3 ], and propose new tools to compute more recent q -series invariants Z ̂ ( M 3 ) in the case of manifolds with b 1 &gt; 0. Although we use genus-1 mapping tori as our “case study,” many results and techniques readily apply to more general 3-manifolds, as we illustrate throughout the paper.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP09(2020)152</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Conformal Field Models in String Theory ; Elementary Particles ; Physical Sciences ; Physics ; Physics and Astronomy ; PHYSICS OF ELEMENTARY PARTICLES AND FIELDS ; Physics, Particles &amp; Fields ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Science &amp; Technology ; String Theory ; Supersymmetric Effective Theories ; Topological Field Theories</subject><ispartof>The journal of high energy physics, 2020-09, Vol.2020 (9), p.1-60, Article 152</ispartof><rights>The Author(s) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000576402700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c462t-2fa63f480f123c5fdc83f8a6951167e9c0c6a982a30d56b75709da812dc0f7d13</citedby><cites>FETCH-LOGICAL-c462t-2fa63f480f123c5fdc83f8a6951167e9c0c6a982a30d56b75709da812dc0f7d13</cites><orcidid>0000-0002-6132-0871 ; 0000-0002-9486-1762 ; 0000000261320871</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP09(2020)152$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP09(2020)152$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,865,886,2103,2115,27928,27929,41124,42193,51580</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1706711$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chun, Sungbong</creatorcontrib><creatorcontrib>Gukov, Sergei</creatorcontrib><creatorcontrib>Park, Sunghyuk</creatorcontrib><creatorcontrib>Sopenko, Nikita</creatorcontrib><creatorcontrib>Rutgers Univ., Piscataway, NJ (United States)</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><title>3d-3d correspondence for mapping tori</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><addtitle>J HIGH ENERGY PHYS</addtitle><description>A bstract One of the main challenges in 3d-3d correspondence is that no existent approach offers a complete description of 3d N = 2 SCFT T [ M 3 ] — or, rather, a “collection of SCFTs” as we refer to it in the paper — for all types of 3-manifolds that include, for example, a 3-torus, Brieskorn spheres, and hyperbolic surgeries on knots. The goal of this paper is to overcome this challenge by a more systematic study of 3d-3d correspondence that, first of all, does not rely heavily on any geometric structure on M 3 and, secondly, is not limited to a particular supersymmetric partition function of T [ M 3 ]. In particular, we propose to describe such “collection of SCFTs” in terms of 3d N = 2 gauge theories with “non-linear matter” fields valued in complex group manifolds. As a result, we are able to recover familiar 3-manifold invariants, such as Turaev torsion and WRT invariants, from twisted indices and half-indices of T [ M 3 ], and propose new tools to compute more recent q -series invariants Z ̂ ( M 3 ) in the case of manifolds with b 1 &gt; 0. Although we use genus-1 mapping tori as our “case study,” many results and techniques readily apply to more general 3-manifolds, as we illustrate throughout the paper.</description><subject>Classical and Quantum Gravitation</subject><subject>Conformal Field Models in String Theory</subject><subject>Elementary Particles</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</subject><subject>Physics, Particles &amp; Fields</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Science &amp; Technology</subject><subject>String Theory</subject><subject>Supersymmetric Effective Theories</subject><subject>Topological Field Theories</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkM9LwzAYhosoOKdnr0MQFKn7krZJepQynTLQg55Dmh8zY0tGkiH-97ZWhhfBUz7C-z7fx5Nl5whuEQCdPs1nL1BfYcBwjSp8kI0Q4DpnJa0Pf83H2UmMKwBUoRpG2WWh8kJNpA9Bx613SjupJ8aHyUZst9YtJ8kHe5odGbGO-uznHWdv97PXZp4vnh8em7tFLkuCU46NIIUpGRiEC1kZJVlhmCB1hRChupYgiagZFgWoirS0olArwRBWEgxVqBhnjwNXebHi22A3InxyLyz__vBhyUVIVq41F4QyjFsFIMtSKcWUMQgIYW1Ryha1HetiYPmYLI_SJi3fpXdOy8QRBUJRv3A6hGTwMQZt9ksR8F4rH7TyXivvtHaNm6HxoVtvOmwvbN8CgIqSEjDtJuj57P_pxiaRrHeN37nUVWGoxi7uljrwld8F1-n_87YvymOX6w</recordid><startdate>20200923</startdate><enddate>20200923</enddate><creator>Chun, Sungbong</creator><creator>Gukov, Sergei</creator><creator>Park, Sunghyuk</creator><creator>Sopenko, Nikita</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Berlin</general><general>SpringerOpen</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6132-0871</orcidid><orcidid>https://orcid.org/0000-0002-9486-1762</orcidid><orcidid>https://orcid.org/0000000261320871</orcidid></search><sort><creationdate>20200923</creationdate><title>3d-3d correspondence for mapping tori</title><author>Chun, Sungbong ; Gukov, Sergei ; Park, Sunghyuk ; Sopenko, Nikita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-2fa63f480f123c5fdc83f8a6951167e9c0c6a982a30d56b75709da812dc0f7d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Conformal Field Models in String Theory</topic><topic>Elementary Particles</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>PHYSICS OF ELEMENTARY PARTICLES AND FIELDS</topic><topic>Physics, Particles &amp; Fields</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Science &amp; Technology</topic><topic>String Theory</topic><topic>Supersymmetric Effective Theories</topic><topic>Topological Field Theories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chun, Sungbong</creatorcontrib><creatorcontrib>Gukov, Sergei</creatorcontrib><creatorcontrib>Park, Sunghyuk</creatorcontrib><creatorcontrib>Sopenko, Nikita</creatorcontrib><creatorcontrib>Rutgers Univ., Piscataway, NJ (United States)</creatorcontrib><creatorcontrib>California Institute of Technology (CalTech), Pasadena, CA (United States)</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chun, Sungbong</au><au>Gukov, Sergei</au><au>Park, Sunghyuk</au><au>Sopenko, Nikita</au><aucorp>Rutgers Univ., Piscataway, NJ (United States)</aucorp><aucorp>California Institute of Technology (CalTech), Pasadena, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3d-3d correspondence for mapping tori</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><stitle>J HIGH ENERGY PHYS</stitle><date>2020-09-23</date><risdate>2020</risdate><volume>2020</volume><issue>9</issue><spage>1</spage><epage>60</epage><pages>1-60</pages><artnum>152</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract One of the main challenges in 3d-3d correspondence is that no existent approach offers a complete description of 3d N = 2 SCFT T [ M 3 ] — or, rather, a “collection of SCFTs” as we refer to it in the paper — for all types of 3-manifolds that include, for example, a 3-torus, Brieskorn spheres, and hyperbolic surgeries on knots. The goal of this paper is to overcome this challenge by a more systematic study of 3d-3d correspondence that, first of all, does not rely heavily on any geometric structure on M 3 and, secondly, is not limited to a particular supersymmetric partition function of T [ M 3 ]. In particular, we propose to describe such “collection of SCFTs” in terms of 3d N = 2 gauge theories with “non-linear matter” fields valued in complex group manifolds. As a result, we are able to recover familiar 3-manifold invariants, such as Turaev torsion and WRT invariants, from twisted indices and half-indices of T [ M 3 ], and propose new tools to compute more recent q -series invariants Z ̂ ( M 3 ) in the case of manifolds with b 1 &gt; 0. Although we use genus-1 mapping tori as our “case study,” many results and techniques readily apply to more general 3-manifolds, as we illustrate throughout the paper.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP09(2020)152</doi><tpages>60</tpages><orcidid>https://orcid.org/0000-0002-6132-0871</orcidid><orcidid>https://orcid.org/0000-0002-9486-1762</orcidid><orcidid>https://orcid.org/0000000261320871</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2020-09, Vol.2020 (9), p.1-60, Article 152
issn 1029-8479
1029-8479
language eng
recordid cdi_crossref_primary_10_1007_JHEP09_2020_152
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Springer Nature OA/Free Journals
subjects Classical and Quantum Gravitation
Conformal Field Models in String Theory
Elementary Particles
Physical Sciences
Physics
Physics and Astronomy
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Physics, Particles & Fields
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Science & Technology
String Theory
Supersymmetric Effective Theories
Topological Field Theories
title 3d-3d correspondence for mapping tori
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A11%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-webofscience_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3d-3d%20correspondence%20for%20mapping%20tori&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Chun,%20Sungbong&rft.aucorp=Rutgers%20Univ.,%20Piscataway,%20NJ%20(United%20States)&rft.date=2020-09-23&rft.volume=2020&rft.issue=9&rft.spage=1&rft.epage=60&rft.pages=1-60&rft.artnum=152&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP09(2020)152&rft_dat=%3Cwebofscience_cross%3E000576402700001%3C/webofscience_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a67822bd00c44ddd8dff10668b34cb1b&rfr_iscdi=true