Stress tensor sector of conformal correlators operators in the Regge limit
A bstract An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four- point functions in CFTs with a...
Gespeichert in:
Veröffentlicht in: | The journal of high energy physics 2020-07, Vol.2020 (7), p.1-52, Article 19 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 52 |
---|---|
container_issue | 7 |
container_start_page | 1 |
container_title | The journal of high energy physics |
container_volume | 2020 |
creator | Karlsson, Robin Kulaxizi, Manuela Parnachev, Andrei Tadić, Petar |
description | A
bstract
An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four- point functions in CFTs with a large central charge, can be determined by computing a heavy-heavy-light-light correlator. We show how one can make substantial progress in this direction by bootstrapping a certain ansatz for the stress tensor sector of the correlator, iteratively computing the OPE coefficients of multi-stress tensor operators with increasing twist. Some parameters are not fixed by the bootstrap — they correspond to the OPE coefficients of multi-stress tensors with spin zero and two. We further show that in holographic CFTs one can use the phase shift computed in the dual gravitational theory to reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors with spin zero. Finally, we verify some of these results using the Lorentzian OPE inversion formula and comment on its regime of applicability. |
doi_str_mv | 10.1007/JHEP07(2020)019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_JHEP07_2020_019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c1a6e4b5e0c24932b531fe15ec3d1189</doaj_id><sourcerecordid>2419779313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-322196ede3b45f57b9fc1c8da194a280390c8b2991ce43e43eb7bbe156ecd73c3</originalsourceid><addsrcrecordid>eNqNUVFLHDEQXkoFrfrs64IvFrk6k2Qvm8dyaFWEiq3PIcnOXnPsbc4kR_Hfm-sW64vQEJiP4fu-mXypqhOELwggL26vL-9BnjFg8BlQfagOEJiatUKqj2_wfvUppRUANqjgoLr9kSOlVGcaU4h1IpdLCX3twtiHuDZDQTHSYEo_1WFDcUJ-rPMvqh9ouaR68Gufj6q93gyJjv_Ww-rx6vLn4np29_3bzeLr3cwJlHnGGUM1p464FU3fSKt6h67tDCphWAtcgWstUwodCb67VlpL2MzJdZI7fljdTL5dMCu9iX5t4rMOxus_jRCX2sTs3UDaoZmTsA2BY0JxZhuOfbEixzvEVhWv08lrE8PTllLWq7CNY1lfM4FKSsWRF9bFxHIxpBSpf52KoHfh6yl8vQtfl_CL4nxS_CYb-uQ8jY5eVQDQiFaq8gPlsMJu_5-98NlkH8ZF2I65SGGSpkIflxT_PeC93V4A1uKm9A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419779313</pqid></control><display><type>article</type><title>Stress tensor sector of conformal correlators operators in the Regge limit</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Karlsson, Robin ; Kulaxizi, Manuela ; Parnachev, Andrei ; Tadić, Petar</creator><creatorcontrib>Karlsson, Robin ; Kulaxizi, Manuela ; Parnachev, Andrei ; Tadić, Petar</creatorcontrib><description>A
bstract
An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four- point functions in CFTs with a large central charge, can be determined by computing a heavy-heavy-light-light correlator. We show how one can make substantial progress in this direction by bootstrapping a certain ansatz for the stress tensor sector of the correlator, iteratively computing the OPE coefficients of multi-stress tensor operators with increasing twist. Some parameters are not fixed by the bootstrap — they correspond to the OPE coefficients of multi-stress tensors with spin zero and two. We further show that in holographic CFTs one can use the phase shift computed in the dual gravitational theory to reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors with spin zero. Finally, we verify some of these results using the Lorentzian OPE inversion formula and comment on its regime of applicability.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP07(2020)019</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>AdS-CFT Correspondence ; Black Holes ; Classical and Quantum Gravitation ; Coefficients ; Computation ; Conformal Field Theory ; Correlation ; Correlators ; Elementary Particles ; Gravitation theory ; High energy physics ; Mathematical analysis ; Operators (mathematics) ; Parameters ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Particles & Fields ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Science & Technology ; Stress tensors ; String Theory ; Tensors</subject><ispartof>The journal of high energy physics, 2020-07, Vol.2020 (7), p.1-52, Article 19</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000548791900002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c417t-322196ede3b45f57b9fc1c8da194a280390c8b2991ce43e43eb7bbe156ecd73c3</citedby><cites>FETCH-LOGICAL-c417t-322196ede3b45f57b9fc1c8da194a280390c8b2991ce43e43eb7bbe156ecd73c3</cites><orcidid>0000-0002-1439-1685 ; 0000-0002-8510-0195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP07(2020)019$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP07(2020)019$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,2116,27931,27932,28255,41127,42196,51583</link.rule.ids></links><search><creatorcontrib>Karlsson, Robin</creatorcontrib><creatorcontrib>Kulaxizi, Manuela</creatorcontrib><creatorcontrib>Parnachev, Andrei</creatorcontrib><creatorcontrib>Tadić, Petar</creatorcontrib><title>Stress tensor sector of conformal correlators operators in the Regge limit</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><addtitle>J HIGH ENERGY PHYS</addtitle><description>A
bstract
An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four- point functions in CFTs with a large central charge, can be determined by computing a heavy-heavy-light-light correlator. We show how one can make substantial progress in this direction by bootstrapping a certain ansatz for the stress tensor sector of the correlator, iteratively computing the OPE coefficients of multi-stress tensor operators with increasing twist. Some parameters are not fixed by the bootstrap — they correspond to the OPE coefficients of multi-stress tensors with spin zero and two. We further show that in holographic CFTs one can use the phase shift computed in the dual gravitational theory to reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors with spin zero. Finally, we verify some of these results using the Lorentzian OPE inversion formula and comment on its regime of applicability.</description><subject>AdS-CFT Correspondence</subject><subject>Black Holes</subject><subject>Classical and Quantum Gravitation</subject><subject>Coefficients</subject><subject>Computation</subject><subject>Conformal Field Theory</subject><subject>Correlation</subject><subject>Correlators</subject><subject>Elementary Particles</subject><subject>Gravitation theory</subject><subject>High energy physics</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Particles & Fields</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Science & Technology</subject><subject>Stress tensors</subject><subject>String Theory</subject><subject>Tensors</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUVFLHDEQXkoFrfrs64IvFrk6k2Qvm8dyaFWEiq3PIcnOXnPsbc4kR_Hfm-sW64vQEJiP4fu-mXypqhOELwggL26vL-9BnjFg8BlQfagOEJiatUKqj2_wfvUppRUANqjgoLr9kSOlVGcaU4h1IpdLCX3twtiHuDZDQTHSYEo_1WFDcUJ-rPMvqh9ouaR68Gufj6q93gyJjv_Ww-rx6vLn4np29_3bzeLr3cwJlHnGGUM1p464FU3fSKt6h67tDCphWAtcgWstUwodCb67VlpL2MzJdZI7fljdTL5dMCu9iX5t4rMOxus_jRCX2sTs3UDaoZmTsA2BY0JxZhuOfbEixzvEVhWv08lrE8PTllLWq7CNY1lfM4FKSsWRF9bFxHIxpBSpf52KoHfh6yl8vQtfl_CL4nxS_CYb-uQ8jY5eVQDQiFaq8gPlsMJu_5-98NlkH8ZF2I65SGGSpkIflxT_PeC93V4A1uKm9A</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Karlsson, Robin</creator><creator>Kulaxizi, Manuela</creator><creator>Parnachev, Andrei</creator><creator>Tadić, Petar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1439-1685</orcidid><orcidid>https://orcid.org/0000-0002-8510-0195</orcidid></search><sort><creationdate>20200701</creationdate><title>Stress tensor sector of conformal correlators operators in the Regge limit</title><author>Karlsson, Robin ; Kulaxizi, Manuela ; Parnachev, Andrei ; Tadić, Petar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-322196ede3b45f57b9fc1c8da194a280390c8b2991ce43e43eb7bbe156ecd73c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AdS-CFT Correspondence</topic><topic>Black Holes</topic><topic>Classical and Quantum Gravitation</topic><topic>Coefficients</topic><topic>Computation</topic><topic>Conformal Field Theory</topic><topic>Correlation</topic><topic>Correlators</topic><topic>Elementary Particles</topic><topic>Gravitation theory</topic><topic>High energy physics</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Particles & Fields</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Science & Technology</topic><topic>Stress tensors</topic><topic>String Theory</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlsson, Robin</creatorcontrib><creatorcontrib>Kulaxizi, Manuela</creatorcontrib><creatorcontrib>Parnachev, Andrei</creatorcontrib><creatorcontrib>Tadić, Petar</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlsson, Robin</au><au>Kulaxizi, Manuela</au><au>Parnachev, Andrei</au><au>Tadić, Petar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress tensor sector of conformal correlators operators in the Regge limit</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><stitle>J HIGH ENERGY PHYS</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>2020</volume><issue>7</issue><spage>1</spage><epage>52</epage><pages>1-52</pages><artnum>19</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A
bstract
An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four- point functions in CFTs with a large central charge, can be determined by computing a heavy-heavy-light-light correlator. We show how one can make substantial progress in this direction by bootstrapping a certain ansatz for the stress tensor sector of the correlator, iteratively computing the OPE coefficients of multi-stress tensor operators with increasing twist. Some parameters are not fixed by the bootstrap — they correspond to the OPE coefficients of multi-stress tensors with spin zero and two. We further show that in holographic CFTs one can use the phase shift computed in the dual gravitational theory to reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors with spin zero. Finally, we verify some of these results using the Lorentzian OPE inversion formula and comment on its regime of applicability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP07(2020)019</doi><tpages>52</tpages><orcidid>https://orcid.org/0000-0002-1439-1685</orcidid><orcidid>https://orcid.org/0000-0002-8510-0195</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1029-8479 |
ispartof | The journal of high energy physics, 2020-07, Vol.2020 (7), p.1-52, Article 19 |
issn | 1029-8479 1029-8479 |
language | eng |
recordid | cdi_crossref_primary_10_1007_JHEP07_2020_019 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection; Springer Nature OA/Free Journals |
subjects | AdS-CFT Correspondence Black Holes Classical and Quantum Gravitation Coefficients Computation Conformal Field Theory Correlation Correlators Elementary Particles Gravitation theory High energy physics Mathematical analysis Operators (mathematics) Parameters Physical Sciences Physics Physics and Astronomy Physics, Particles & Fields Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Science & Technology Stress tensors String Theory Tensors |
title | Stress tensor sector of conformal correlators operators in the Regge limit |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20tensor%20sector%20of%20conformal%20correlators%20operators%20in%20the%20Regge%20limit&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Karlsson,%20Robin&rft.date=2020-07-01&rft.volume=2020&rft.issue=7&rft.spage=1&rft.epage=52&rft.pages=1-52&rft.artnum=19&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP07(2020)019&rft_dat=%3Cproquest_cross%3E2419779313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419779313&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c1a6e4b5e0c24932b531fe15ec3d1189&rfr_iscdi=true |