Stress tensor sector of conformal correlators operators in the Regge limit

A bstract An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four- point functions in CFTs with a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-07, Vol.2020 (7), p.1-52, Article 19
Hauptverfasser: Karlsson, Robin, Kulaxizi, Manuela, Parnachev, Andrei, Tadić, Petar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 52
container_issue 7
container_start_page 1
container_title The journal of high energy physics
container_volume 2020
creator Karlsson, Robin
Kulaxizi, Manuela
Parnachev, Andrei
Tadić, Petar
description A bstract An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four- point functions in CFTs with a large central charge, can be determined by computing a heavy-heavy-light-light correlator. We show how one can make substantial progress in this direction by bootstrapping a certain ansatz for the stress tensor sector of the correlator, iteratively computing the OPE coefficients of multi-stress tensor operators with increasing twist. Some parameters are not fixed by the bootstrap — they correspond to the OPE coefficients of multi-stress tensors with spin zero and two. We further show that in holographic CFTs one can use the phase shift computed in the dual gravitational theory to reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors with spin zero. Finally, we verify some of these results using the Lorentzian OPE inversion formula and comment on its regime of applicability.
doi_str_mv 10.1007/JHEP07(2020)019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_JHEP07_2020_019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_c1a6e4b5e0c24932b531fe15ec3d1189</doaj_id><sourcerecordid>2419779313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-322196ede3b45f57b9fc1c8da194a280390c8b2991ce43e43eb7bbe156ecd73c3</originalsourceid><addsrcrecordid>eNqNUVFLHDEQXkoFrfrs64IvFrk6k2Qvm8dyaFWEiq3PIcnOXnPsbc4kR_Hfm-sW64vQEJiP4fu-mXypqhOELwggL26vL-9BnjFg8BlQfagOEJiatUKqj2_wfvUppRUANqjgoLr9kSOlVGcaU4h1IpdLCX3twtiHuDZDQTHSYEo_1WFDcUJ-rPMvqh9ouaR68Gufj6q93gyJjv_Ww-rx6vLn4np29_3bzeLr3cwJlHnGGUM1p464FU3fSKt6h67tDCphWAtcgWstUwodCb67VlpL2MzJdZI7fljdTL5dMCu9iX5t4rMOxus_jRCX2sTs3UDaoZmTsA2BY0JxZhuOfbEixzvEVhWv08lrE8PTllLWq7CNY1lfM4FKSsWRF9bFxHIxpBSpf52KoHfh6yl8vQtfl_CL4nxS_CYb-uQ8jY5eVQDQiFaq8gPlsMJu_5-98NlkH8ZF2I65SGGSpkIflxT_PeC93V4A1uKm9A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2419779313</pqid></control><display><type>article</type><title>Stress tensor sector of conformal correlators operators in the Regge limit</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Karlsson, Robin ; Kulaxizi, Manuela ; Parnachev, Andrei ; Tadić, Petar</creator><creatorcontrib>Karlsson, Robin ; Kulaxizi, Manuela ; Parnachev, Andrei ; Tadić, Petar</creatorcontrib><description>A bstract An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four- point functions in CFTs with a large central charge, can be determined by computing a heavy-heavy-light-light correlator. We show how one can make substantial progress in this direction by bootstrapping a certain ansatz for the stress tensor sector of the correlator, iteratively computing the OPE coefficients of multi-stress tensor operators with increasing twist. Some parameters are not fixed by the bootstrap — they correspond to the OPE coefficients of multi-stress tensors with spin zero and two. We further show that in holographic CFTs one can use the phase shift computed in the dual gravitational theory to reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors with spin zero. Finally, we verify some of these results using the Lorentzian OPE inversion formula and comment on its regime of applicability.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP07(2020)019</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>AdS-CFT Correspondence ; Black Holes ; Classical and Quantum Gravitation ; Coefficients ; Computation ; Conformal Field Theory ; Correlation ; Correlators ; Elementary Particles ; Gravitation theory ; High energy physics ; Mathematical analysis ; Operators (mathematics) ; Parameters ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Particles &amp; Fields ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Science &amp; Technology ; Stress tensors ; String Theory ; Tensors</subject><ispartof>The journal of high energy physics, 2020-07, Vol.2020 (7), p.1-52, Article 19</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>18</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000548791900002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c417t-322196ede3b45f57b9fc1c8da194a280390c8b2991ce43e43eb7bbe156ecd73c3</citedby><cites>FETCH-LOGICAL-c417t-322196ede3b45f57b9fc1c8da194a280390c8b2991ce43e43eb7bbe156ecd73c3</cites><orcidid>0000-0002-1439-1685 ; 0000-0002-8510-0195</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP07(2020)019$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP07(2020)019$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,2104,2116,27931,27932,28255,41127,42196,51583</link.rule.ids></links><search><creatorcontrib>Karlsson, Robin</creatorcontrib><creatorcontrib>Kulaxizi, Manuela</creatorcontrib><creatorcontrib>Parnachev, Andrei</creatorcontrib><creatorcontrib>Tadić, Petar</creatorcontrib><title>Stress tensor sector of conformal correlators operators in the Regge limit</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><addtitle>J HIGH ENERGY PHYS</addtitle><description>A bstract An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four- point functions in CFTs with a large central charge, can be determined by computing a heavy-heavy-light-light correlator. We show how one can make substantial progress in this direction by bootstrapping a certain ansatz for the stress tensor sector of the correlator, iteratively computing the OPE coefficients of multi-stress tensor operators with increasing twist. Some parameters are not fixed by the bootstrap — they correspond to the OPE coefficients of multi-stress tensors with spin zero and two. We further show that in holographic CFTs one can use the phase shift computed in the dual gravitational theory to reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors with spin zero. Finally, we verify some of these results using the Lorentzian OPE inversion formula and comment on its regime of applicability.</description><subject>AdS-CFT Correspondence</subject><subject>Black Holes</subject><subject>Classical and Quantum Gravitation</subject><subject>Coefficients</subject><subject>Computation</subject><subject>Conformal Field Theory</subject><subject>Correlation</subject><subject>Correlators</subject><subject>Elementary Particles</subject><subject>Gravitation theory</subject><subject>High energy physics</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Particles &amp; Fields</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Science &amp; Technology</subject><subject>Stress tensors</subject><subject>String Theory</subject><subject>Tensors</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNUVFLHDEQXkoFrfrs64IvFrk6k2Qvm8dyaFWEiq3PIcnOXnPsbc4kR_Hfm-sW64vQEJiP4fu-mXypqhOELwggL26vL-9BnjFg8BlQfagOEJiatUKqj2_wfvUppRUANqjgoLr9kSOlVGcaU4h1IpdLCX3twtiHuDZDQTHSYEo_1WFDcUJ-rPMvqh9ouaR68Gufj6q93gyJjv_Ww-rx6vLn4np29_3bzeLr3cwJlHnGGUM1p464FU3fSKt6h67tDCphWAtcgWstUwodCb67VlpL2MzJdZI7fljdTL5dMCu9iX5t4rMOxus_jRCX2sTs3UDaoZmTsA2BY0JxZhuOfbEixzvEVhWv08lrE8PTllLWq7CNY1lfM4FKSsWRF9bFxHIxpBSpf52KoHfh6yl8vQtfl_CL4nxS_CYb-uQ8jY5eVQDQiFaq8gPlsMJu_5-98NlkH8ZF2I65SGGSpkIflxT_PeC93V4A1uKm9A</recordid><startdate>20200701</startdate><enddate>20200701</enddate><creator>Karlsson, Robin</creator><creator>Kulaxizi, Manuela</creator><creator>Parnachev, Andrei</creator><creator>Tadić, Petar</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1439-1685</orcidid><orcidid>https://orcid.org/0000-0002-8510-0195</orcidid></search><sort><creationdate>20200701</creationdate><title>Stress tensor sector of conformal correlators operators in the Regge limit</title><author>Karlsson, Robin ; Kulaxizi, Manuela ; Parnachev, Andrei ; Tadić, Petar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-322196ede3b45f57b9fc1c8da194a280390c8b2991ce43e43eb7bbe156ecd73c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>AdS-CFT Correspondence</topic><topic>Black Holes</topic><topic>Classical and Quantum Gravitation</topic><topic>Coefficients</topic><topic>Computation</topic><topic>Conformal Field Theory</topic><topic>Correlation</topic><topic>Correlators</topic><topic>Elementary Particles</topic><topic>Gravitation theory</topic><topic>High energy physics</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Particles &amp; Fields</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Science &amp; Technology</topic><topic>Stress tensors</topic><topic>String Theory</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karlsson, Robin</creatorcontrib><creatorcontrib>Kulaxizi, Manuela</creatorcontrib><creatorcontrib>Parnachev, Andrei</creatorcontrib><creatorcontrib>Tadić, Petar</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karlsson, Robin</au><au>Kulaxizi, Manuela</au><au>Parnachev, Andrei</au><au>Tadić, Petar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress tensor sector of conformal correlators operators in the Regge limit</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><stitle>J HIGH ENERGY PHYS</stitle><date>2020-07-01</date><risdate>2020</risdate><volume>2020</volume><issue>7</issue><spage>1</spage><epage>52</epage><pages>1-52</pages><artnum>19</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract An important part of a CFT four-point function, the stress tensor sector, comprises the exchanges of the stress tensor and its composites. The OPE coefficients of these multi-stress tensor operators and consequently, the complete stress tensor sector of four- point functions in CFTs with a large central charge, can be determined by computing a heavy-heavy-light-light correlator. We show how one can make substantial progress in this direction by bootstrapping a certain ansatz for the stress tensor sector of the correlator, iteratively computing the OPE coefficients of multi-stress tensor operators with increasing twist. Some parameters are not fixed by the bootstrap — they correspond to the OPE coefficients of multi-stress tensors with spin zero and two. We further show that in holographic CFTs one can use the phase shift computed in the dual gravitational theory to reduce the set of undetermined parameters to the OPE coefficients of multi-stress tensors with spin zero. Finally, we verify some of these results using the Lorentzian OPE inversion formula and comment on its regime of applicability.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP07(2020)019</doi><tpages>52</tpages><orcidid>https://orcid.org/0000-0002-1439-1685</orcidid><orcidid>https://orcid.org/0000-0002-8510-0195</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2020-07, Vol.2020 (7), p.1-52, Article 19
issn 1029-8479
1029-8479
language eng
recordid cdi_crossref_primary_10_1007_JHEP07_2020_019
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection; Springer Nature OA/Free Journals
subjects AdS-CFT Correspondence
Black Holes
Classical and Quantum Gravitation
Coefficients
Computation
Conformal Field Theory
Correlation
Correlators
Elementary Particles
Gravitation theory
High energy physics
Mathematical analysis
Operators (mathematics)
Parameters
Physical Sciences
Physics
Physics and Astronomy
Physics, Particles & Fields
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Science & Technology
Stress tensors
String Theory
Tensors
title Stress tensor sector of conformal correlators operators in the Regge limit
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T03%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20tensor%20sector%20of%20conformal%20correlators%20operators%20in%20the%20Regge%20limit&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Karlsson,%20Robin&rft.date=2020-07-01&rft.volume=2020&rft.issue=7&rft.spage=1&rft.epage=52&rft.pages=1-52&rft.artnum=19&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP07(2020)019&rft_dat=%3Cproquest_cross%3E2419779313%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2419779313&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_c1a6e4b5e0c24932b531fe15ec3d1189&rfr_iscdi=true