Moduli-dependent Calabi-Yau and SU(3)-structure metrics from machine learning

A bstract We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applicat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2021-05, Vol.2021 (5), p.1-45, Article 13
Hauptverfasser: Anderson, Lara B., Gerdes, Mathis, Gray, James, Krippendorf, Sven, Raghuram, Nikhil, Ruehle, Fabian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 45
container_issue 5
container_start_page 1
container_title The journal of high energy physics
container_volume 2021
creator Anderson, Lara B.
Gerdes, Mathis
Gray, James
Krippendorf, Sven
Raghuram, Nikhil
Ruehle, Fabian
description A bstract We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string spectrum which plays a crucial role in swampland conjectures, to mirror symmetry and the SYZ conjecture. In the case of SU(3) structure, our machine learning approach allows us to engineer metrics with certain torsion properties. Our methods are demonstrated for Calabi-Yau and SU(3)-structure manifolds based on a one-parameter family of quintic hypersurfaces in ℙ 4 .
doi_str_mv 10.1007/JHEP05(2021)013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_JHEP05_2021_013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_da2e0587fa0a461b866f721ac8ce14f1</doaj_id><sourcerecordid>2521815794</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-3530d9fa92231dd7da84b04c2e8bf026c4dbcd6f4d5571694c55db1df51db9fe3</originalsourceid><addsrcrecordid>eNqNkEFrFTEURgexYG1dux1w0yJjbzLJTGYpQ2srLRW0C1chk9w885iXPJMMxX9v2pHqRugql3DOl5uvqt4S-EAA-rPPl-dfgJ9QoOQUSPuiOiRAh0awfnj5z_yqep3SFoBwMsBhdXMTzDK7xuAevUGf61HNanLNd7XUypv6691Je9qkHBedl4j1DnN0OtU2hl29U_qH81jPqKJ3fnNcHVg1J3zz5zyq7i7Ov42XzfXtp6vx43WjGW9z0_IWzGDVQGlLjOmNEmwCpimKyQLtNDOTNp1lhvOedAPTnJuJGMuJmQaL7VF1teaaoLZyH91OxV8yKCcfL0LcSBWz0zNKoygCF71VoFhHJtF1tqdEaaGRMEtK1rs1ax_DzwVTltuwRF_Wl5RTIgjvB1aos5XSMaQU0T69SkA-9C_X_uVD_7L0X4z3q3GPU7BJO_QanywoCm8FA1om4IUWz6dHl1V2wY9h8bmosKqp4H6D8e8H_rfbb2Rcpzc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2521815794</pqid></control><display><type>article</type><title>Moduli-dependent Calabi-Yau and SU(3)-structure metrics from machine learning</title><source>DOAJ Directory of Open Access Journals</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Springer Nature OA/Free Journals</source><creator>Anderson, Lara B. ; Gerdes, Mathis ; Gray, James ; Krippendorf, Sven ; Raghuram, Nikhil ; Ruehle, Fabian</creator><creatorcontrib>Anderson, Lara B. ; Gerdes, Mathis ; Gray, James ; Krippendorf, Sven ; Raghuram, Nikhil ; Ruehle, Fabian</creatorcontrib><description>A bstract We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string spectrum which plays a crucial role in swampland conjectures, to mirror symmetry and the SYZ conjecture. In the case of SU(3) structure, our machine learning approach allows us to engineer metrics with certain torsion properties. Our methods are demonstrated for Calabi-Yau and SU(3)-structure manifolds based on a one-parameter family of quintic hypersurfaces in ℙ 4 .</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP05(2021)013</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Couplings ; Differential and Algebraic Geometry ; Elementary Particles ; Field theory ; High energy physics ; Hyperspaces ; Machine learning ; Numerical methods ; Physical Sciences ; Physics ; Physics and Astronomy ; Physics, Particles &amp; Fields ; Quantum Field Theories ; Quantum Field Theory ; Quantum Physics ; Regular Article - Theoretical Physics ; Relativity Theory ; Science &amp; Technology ; String Theory ; Strings ; Superstring Vacua ; Superstrings and Heterotic Strings</subject><ispartof>The journal of high energy physics, 2021-05, Vol.2021 (5), p.1-45, Article 13</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under CC-BY 4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>27</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000753840200005</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c453t-3530d9fa92231dd7da84b04c2e8bf026c4dbcd6f4d5571694c55db1df51db9fe3</citedby><cites>FETCH-LOGICAL-c453t-3530d9fa92231dd7da84b04c2e8bf026c4dbcd6f4d5571694c55db1df51db9fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/JHEP05(2021)013$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1007/JHEP05(2021)013$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263,41125,42194,51581</link.rule.ids></links><search><creatorcontrib>Anderson, Lara B.</creatorcontrib><creatorcontrib>Gerdes, Mathis</creatorcontrib><creatorcontrib>Gray, James</creatorcontrib><creatorcontrib>Krippendorf, Sven</creatorcontrib><creatorcontrib>Raghuram, Nikhil</creatorcontrib><creatorcontrib>Ruehle, Fabian</creatorcontrib><title>Moduli-dependent Calabi-Yau and SU(3)-structure metrics from machine learning</title><title>The journal of high energy physics</title><addtitle>J. High Energ. Phys</addtitle><addtitle>J HIGH ENERGY PHYS</addtitle><description>A bstract We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string spectrum which plays a crucial role in swampland conjectures, to mirror symmetry and the SYZ conjecture. In the case of SU(3) structure, our machine learning approach allows us to engineer metrics with certain torsion properties. Our methods are demonstrated for Calabi-Yau and SU(3)-structure manifolds based on a one-parameter family of quintic hypersurfaces in ℙ 4 .</description><subject>Classical and Quantum Gravitation</subject><subject>Couplings</subject><subject>Differential and Algebraic Geometry</subject><subject>Elementary Particles</subject><subject>Field theory</subject><subject>High energy physics</subject><subject>Hyperspaces</subject><subject>Machine learning</subject><subject>Numerical methods</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Physics, Particles &amp; Fields</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Quantum Physics</subject><subject>Regular Article - Theoretical Physics</subject><subject>Relativity Theory</subject><subject>Science &amp; Technology</subject><subject>String Theory</subject><subject>Strings</subject><subject>Superstring Vacua</subject><subject>Superstrings and Heterotic Strings</subject><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkEFrFTEURgexYG1dux1w0yJjbzLJTGYpQ2srLRW0C1chk9w885iXPJMMxX9v2pHqRugql3DOl5uvqt4S-EAA-rPPl-dfgJ9QoOQUSPuiOiRAh0awfnj5z_yqep3SFoBwMsBhdXMTzDK7xuAevUGf61HNanLNd7XUypv6691Je9qkHBedl4j1DnN0OtU2hl29U_qH81jPqKJ3fnNcHVg1J3zz5zyq7i7Ov42XzfXtp6vx43WjGW9z0_IWzGDVQGlLjOmNEmwCpimKyQLtNDOTNp1lhvOedAPTnJuJGMuJmQaL7VF1teaaoLZyH91OxV8yKCcfL0LcSBWz0zNKoygCF71VoFhHJtF1tqdEaaGRMEtK1rs1ax_DzwVTltuwRF_Wl5RTIgjvB1aos5XSMaQU0T69SkA-9C_X_uVD_7L0X4z3q3GPU7BJO_QanywoCm8FA1om4IUWz6dHl1V2wY9h8bmosKqp4H6D8e8H_rfbb2Rcpzc</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Anderson, Lara B.</creator><creator>Gerdes, Mathis</creator><creator>Gray, James</creator><creator>Krippendorf, Sven</creator><creator>Raghuram, Nikhil</creator><creator>Ruehle, Fabian</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20210501</creationdate><title>Moduli-dependent Calabi-Yau and SU(3)-structure metrics from machine learning</title><author>Anderson, Lara B. ; Gerdes, Mathis ; Gray, James ; Krippendorf, Sven ; Raghuram, Nikhil ; Ruehle, Fabian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-3530d9fa92231dd7da84b04c2e8bf026c4dbcd6f4d5571694c55db1df51db9fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Couplings</topic><topic>Differential and Algebraic Geometry</topic><topic>Elementary Particles</topic><topic>Field theory</topic><topic>High energy physics</topic><topic>Hyperspaces</topic><topic>Machine learning</topic><topic>Numerical methods</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Physics, Particles &amp; Fields</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Quantum Physics</topic><topic>Regular Article - Theoretical Physics</topic><topic>Relativity Theory</topic><topic>Science &amp; Technology</topic><topic>String Theory</topic><topic>Strings</topic><topic>Superstring Vacua</topic><topic>Superstrings and Heterotic Strings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Lara B.</creatorcontrib><creatorcontrib>Gerdes, Mathis</creatorcontrib><creatorcontrib>Gray, James</creatorcontrib><creatorcontrib>Krippendorf, Sven</creatorcontrib><creatorcontrib>Raghuram, Nikhil</creatorcontrib><creatorcontrib>Ruehle, Fabian</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Lara B.</au><au>Gerdes, Mathis</au><au>Gray, James</au><au>Krippendorf, Sven</au><au>Raghuram, Nikhil</au><au>Ruehle, Fabian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moduli-dependent Calabi-Yau and SU(3)-structure metrics from machine learning</atitle><jtitle>The journal of high energy physics</jtitle><stitle>J. High Energ. Phys</stitle><stitle>J HIGH ENERGY PHYS</stitle><date>2021-05-01</date><risdate>2021</risdate><volume>2021</volume><issue>5</issue><spage>1</spage><epage>45</epage><pages>1-45</pages><artnum>13</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>A bstract We use machine learning to approximate Calabi-Yau and SU(3)-structure metrics, including for the first time complex structure moduli dependence. Our new methods furthermore improve existing numerical approximations in terms of accuracy and speed. Knowing these metrics has numerous applications, ranging from computations of crucial aspects of the effective field theory of string compactifications such as the canonical normalizations for Yukawa couplings, and the massive string spectrum which plays a crucial role in swampland conjectures, to mirror symmetry and the SYZ conjecture. In the case of SU(3) structure, our machine learning approach allows us to engineer metrics with certain torsion properties. Our methods are demonstrated for Calabi-Yau and SU(3)-structure manifolds based on a one-parameter family of quintic hypersurfaces in ℙ 4 .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/JHEP05(2021)013</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2021-05, Vol.2021 (5), p.1-45, Article 13
issn 1029-8479
1029-8479
language eng
recordid cdi_crossref_primary_10_1007_JHEP05_2021_013
source DOAJ Directory of Open Access Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Springer Nature OA/Free Journals
subjects Classical and Quantum Gravitation
Couplings
Differential and Algebraic Geometry
Elementary Particles
Field theory
High energy physics
Hyperspaces
Machine learning
Numerical methods
Physical Sciences
Physics
Physics and Astronomy
Physics, Particles & Fields
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Science & Technology
String Theory
Strings
Superstring Vacua
Superstrings and Heterotic Strings
title Moduli-dependent Calabi-Yau and SU(3)-structure metrics from machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A45%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moduli-dependent%20Calabi-Yau%20and%20SU(3)-structure%20metrics%20from%20machine%20learning&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Anderson,%20Lara%20B.&rft.date=2021-05-01&rft.volume=2021&rft.issue=5&rft.spage=1&rft.epage=45&rft.pages=1-45&rft.artnum=13&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP05(2021)013&rft_dat=%3Cproquest_cross%3E2521815794%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2521815794&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_da2e0587fa0a461b866f721ac8ce14f1&rfr_iscdi=true