mathcal{N} $$ = 3 conformal superspace in four dimensions

We develop a superspace formulation for $$ \mathcal{N} $$ N = 3 conformal supergravity in four spacetime dimensions as a gauge theory of the superconformal group SU(2 , 2 | 3). Upon imposing certain covariant constraints, the algebra of conformally covariant derivatives $$ {\nabla}_A=\left({\nabla}_...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2024-03, Vol.2024 (3), Article 26
Hauptverfasser: Kuzenko, Sergei M., Raptakis, Emmanouil S. N.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title The journal of high energy physics
container_volume 2024
creator Kuzenko, Sergei M.
Raptakis, Emmanouil S. N.
description We develop a superspace formulation for $$ \mathcal{N} $$ N = 3 conformal supergravity in four spacetime dimensions as a gauge theory of the superconformal group SU(2 , 2 | 3). Upon imposing certain covariant constraints, the algebra of conformally covariant derivatives $$ {\nabla}_A=\left({\nabla}_a,{\nabla}_{\alpha}^i,{\nabla}_i^{\overset{\cdot }{\alpha }}\right) $$ ∇ A = ∇ a ∇ α i ∇ i α ⋅ is shown to be determined in terms of a single primary chiral spinor superfield, the super-Weyl spinor W α of dimension +1 / 2 and its conjugate. Associated with W α is its primary descendant B i j of dimension +2, the super-Bach tensor, which determines the equation of motion for conformal supergravity. As an application of this construction, we present two different but equivalent action principles for $$ \mathcal{N} $$ N = 3 conformal supergravity. We describe the model for linearised $$ \mathcal{N} $$ N = 3 conformal supergravity in an arbitrary conformally flat background and demonstrate that it possesses U(1) duality invariance. Additionally, upon degauging certain local symmetries, our superspace geometry is shown to reduce to the U(3) superspace constructed by Howe more than four decades ago. Further degauging proves to lead to a new superspace formalism, called SU(3) superspace, which can also be used to describe $$ \mathcal{N} $$ N = 3 conformal supergravity. Our conformal superspace setting opens up the possibility to formulate the dynamics of the off-shell $$ \mathcal{N} $$ N = 3 super Yang-Mills theory coupled to conformal supergravity.
doi_str_mv 10.1007/JHEP03(2024)026
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_JHEP03_2024_026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_JHEP03_2024_026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c816-f5fbbb4acdeb02103debf67170033015d0ce1f90058afb1792040b721f7a44393</originalsourceid><addsrcrecordid>eNpNzz1PwzAYBGALgUQpzKweOsAQ-r62E8cDA6oKbVUBQ3fLdmwRlC_ZdECI_95UZWC6m073EHKL8IAAcr5ZLd-B3zFg4h5YcUYmCExlpZDq_F-_JFcpfQJgjgomRLXm68OZ5uf1l85m9JFy6vou9LE1DU37wcc0GOdp3dHQ7yOt6tZ3qe67dE0ugmmSv_nLKdk9L3eLVbZ9e1kvnraZK7HIQh6stcK4yltgCHzMUEiUAJyPJypwHoMCyEsTLErFQICVDIM0QnDFp2R-mnWxTyn6oIdYtyZ-awR9hOsTXB_heoTzA_PiSg0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>mathcal{N} $$ = 3 conformal superspace in four dimensions</title><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Kuzenko, Sergei M. ; Raptakis, Emmanouil S. N.</creator><creatorcontrib>Kuzenko, Sergei M. ; Raptakis, Emmanouil S. N.</creatorcontrib><description>We develop a superspace formulation for $$ \mathcal{N} $$ N = 3 conformal supergravity in four spacetime dimensions as a gauge theory of the superconformal group SU(2 , 2 | 3). Upon imposing certain covariant constraints, the algebra of conformally covariant derivatives $$ {\nabla}_A=\left({\nabla}_a,{\nabla}_{\alpha}^i,{\nabla}_i^{\overset{\cdot }{\alpha }}\right) $$ ∇ A = ∇ a ∇ α i ∇ i α ⋅ is shown to be determined in terms of a single primary chiral spinor superfield, the super-Weyl spinor W α of dimension +1 / 2 and its conjugate. Associated with W α is its primary descendant B i j of dimension +2, the super-Bach tensor, which determines the equation of motion for conformal supergravity. As an application of this construction, we present two different but equivalent action principles for $$ \mathcal{N} $$ N = 3 conformal supergravity. We describe the model for linearised $$ \mathcal{N} $$ N = 3 conformal supergravity in an arbitrary conformally flat background and demonstrate that it possesses U(1) duality invariance. Additionally, upon degauging certain local symmetries, our superspace geometry is shown to reduce to the U(3) superspace constructed by Howe more than four decades ago. Further degauging proves to lead to a new superspace formalism, called SU(3) superspace, which can also be used to describe $$ \mathcal{N} $$ N = 3 conformal supergravity. Our conformal superspace setting opens up the possibility to formulate the dynamics of the off-shell $$ \mathcal{N} $$ N = 3 super Yang-Mills theory coupled to conformal supergravity.</description><identifier>ISSN: 1029-8479</identifier><identifier>EISSN: 1029-8479</identifier><identifier>DOI: 10.1007/JHEP03(2024)026</identifier><language>eng</language><ispartof>The journal of high energy physics, 2024-03, Vol.2024 (3), Article 26</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c816-f5fbbb4acdeb02103debf67170033015d0ce1f90058afb1792040b721f7a44393</cites><orcidid>0000-0003-2762-1600 ; 0000-0001-9961-4149</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>Kuzenko, Sergei M.</creatorcontrib><creatorcontrib>Raptakis, Emmanouil S. N.</creatorcontrib><title>mathcal{N} $$ = 3 conformal superspace in four dimensions</title><title>The journal of high energy physics</title><description>We develop a superspace formulation for $$ \mathcal{N} $$ N = 3 conformal supergravity in four spacetime dimensions as a gauge theory of the superconformal group SU(2 , 2 | 3). Upon imposing certain covariant constraints, the algebra of conformally covariant derivatives $$ {\nabla}_A=\left({\nabla}_a,{\nabla}_{\alpha}^i,{\nabla}_i^{\overset{\cdot }{\alpha }}\right) $$ ∇ A = ∇ a ∇ α i ∇ i α ⋅ is shown to be determined in terms of a single primary chiral spinor superfield, the super-Weyl spinor W α of dimension +1 / 2 and its conjugate. Associated with W α is its primary descendant B i j of dimension +2, the super-Bach tensor, which determines the equation of motion for conformal supergravity. As an application of this construction, we present two different but equivalent action principles for $$ \mathcal{N} $$ N = 3 conformal supergravity. We describe the model for linearised $$ \mathcal{N} $$ N = 3 conformal supergravity in an arbitrary conformally flat background and demonstrate that it possesses U(1) duality invariance. Additionally, upon degauging certain local symmetries, our superspace geometry is shown to reduce to the U(3) superspace constructed by Howe more than four decades ago. Further degauging proves to lead to a new superspace formalism, called SU(3) superspace, which can also be used to describe $$ \mathcal{N} $$ N = 3 conformal supergravity. Our conformal superspace setting opens up the possibility to formulate the dynamics of the off-shell $$ \mathcal{N} $$ N = 3 super Yang-Mills theory coupled to conformal supergravity.</description><issn>1029-8479</issn><issn>1029-8479</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNzz1PwzAYBGALgUQpzKweOsAQ-r62E8cDA6oKbVUBQ3fLdmwRlC_ZdECI_95UZWC6m073EHKL8IAAcr5ZLd-B3zFg4h5YcUYmCExlpZDq_F-_JFcpfQJgjgomRLXm68OZ5uf1l85m9JFy6vou9LE1DU37wcc0GOdp3dHQ7yOt6tZ3qe67dE0ugmmSv_nLKdk9L3eLVbZ9e1kvnraZK7HIQh6stcK4yltgCHzMUEiUAJyPJypwHoMCyEsTLErFQICVDIM0QnDFp2R-mnWxTyn6oIdYtyZ-awR9hOsTXB_heoTzA_PiSg0</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>Kuzenko, Sergei M.</creator><creator>Raptakis, Emmanouil S. N.</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2762-1600</orcidid><orcidid>https://orcid.org/0000-0001-9961-4149</orcidid></search><sort><creationdate>20240305</creationdate><title>mathcal{N} $$ = 3 conformal superspace in four dimensions</title><author>Kuzenko, Sergei M. ; Raptakis, Emmanouil S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c816-f5fbbb4acdeb02103debf67170033015d0ce1f90058afb1792040b721f7a44393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuzenko, Sergei M.</creatorcontrib><creatorcontrib>Raptakis, Emmanouil S. N.</creatorcontrib><collection>CrossRef</collection><jtitle>The journal of high energy physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuzenko, Sergei M.</au><au>Raptakis, Emmanouil S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>mathcal{N} $$ = 3 conformal superspace in four dimensions</atitle><jtitle>The journal of high energy physics</jtitle><date>2024-03-05</date><risdate>2024</risdate><volume>2024</volume><issue>3</issue><artnum>26</artnum><issn>1029-8479</issn><eissn>1029-8479</eissn><abstract>We develop a superspace formulation for $$ \mathcal{N} $$ N = 3 conformal supergravity in four spacetime dimensions as a gauge theory of the superconformal group SU(2 , 2 | 3). Upon imposing certain covariant constraints, the algebra of conformally covariant derivatives $$ {\nabla}_A=\left({\nabla}_a,{\nabla}_{\alpha}^i,{\nabla}_i^{\overset{\cdot }{\alpha }}\right) $$ ∇ A = ∇ a ∇ α i ∇ i α ⋅ is shown to be determined in terms of a single primary chiral spinor superfield, the super-Weyl spinor W α of dimension +1 / 2 and its conjugate. Associated with W α is its primary descendant B i j of dimension +2, the super-Bach tensor, which determines the equation of motion for conformal supergravity. As an application of this construction, we present two different but equivalent action principles for $$ \mathcal{N} $$ N = 3 conformal supergravity. We describe the model for linearised $$ \mathcal{N} $$ N = 3 conformal supergravity in an arbitrary conformally flat background and demonstrate that it possesses U(1) duality invariance. Additionally, upon degauging certain local symmetries, our superspace geometry is shown to reduce to the U(3) superspace constructed by Howe more than four decades ago. Further degauging proves to lead to a new superspace formalism, called SU(3) superspace, which can also be used to describe $$ \mathcal{N} $$ N = 3 conformal supergravity. Our conformal superspace setting opens up the possibility to formulate the dynamics of the off-shell $$ \mathcal{N} $$ N = 3 super Yang-Mills theory coupled to conformal supergravity.</abstract><doi>10.1007/JHEP03(2024)026</doi><orcidid>https://orcid.org/0000-0003-2762-1600</orcidid><orcidid>https://orcid.org/0000-0001-9961-4149</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1029-8479
ispartof The journal of high energy physics, 2024-03, Vol.2024 (3), Article 26
issn 1029-8479
1029-8479
language eng
recordid cdi_crossref_primary_10_1007_JHEP03_2024_026
source DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title mathcal{N} $$ = 3 conformal superspace in four dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T20%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=mathcal%7BN%7D%20$$%20=%203%20conformal%20superspace%20in%20four%20dimensions&rft.jtitle=The%20journal%20of%20high%20energy%20physics&rft.au=Kuzenko,%20Sergei%20M.&rft.date=2024-03-05&rft.volume=2024&rft.issue=3&rft.artnum=26&rft.issn=1029-8479&rft.eissn=1029-8479&rft_id=info:doi/10.1007/JHEP03(2024)026&rft_dat=%3Ccrossref%3E10_1007_JHEP03_2024_026%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true