On a Subclass of Approximable Functions on Closed Subsets

Let E be a closed non-Arakelian set and let A ( E ) be the class of all functions which are continuous on E and analytic in E °. The paper is devoted to the investigation of the functions belonging to A ( E ), which can be extended as functions of class A ( F ) for an Arakelian set F containing E .

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational methods and function theory 2011-01, Vol.11 (1), p.123-133
Hauptverfasser: Danielyan, Arthur A., Harutyunyan, Gohar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 123
container_title Computational methods and function theory
container_volume 11
creator Danielyan, Arthur A.
Harutyunyan, Gohar
description Let E be a closed non-Arakelian set and let A ( E ) be the class of all functions which are continuous on E and analytic in E °. The paper is devoted to the investigation of the functions belonging to A ( E ), which can be extended as functions of class A ( F ) for an Arakelian set F containing E .
doi_str_mv 10.1007/BF03321792
format Article
fullrecord <record><control><sourceid>crossref_sprin</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF03321792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_BF03321792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c226t-a4f4e7ece7ba35b3a2db41e5c20af34941a88a0673a8137e6b11055eebc6eca53</originalsourceid><addsrcrecordid>eNptz81KxDAUBeAgCtbRjU-QtVLNb9Msx-KoMDALdV1uMrcyQ01K0oK-vR1GcOPqLu7H4RxCrjm744yZ-4cVk1JwY8UJKQS3upRGqFNS8Iqb0iplzslFznvGtLJSFsRuAgX6OjnfQ840dnQ5DCl-7T7B9UhXU_DjLob5E2jTx4zbA8445kty1kGf8er3Lsj76vGteS7Xm6eXZrkuvRDVWILqFBr0aBxI7SSIrVMctRcMOqms4lDXwCojoebSYOU4Z1ojOl-hBy0X5OaY61PMOWHXDmlul75bztrD6PZv9IxvjzjPKHxgavdxSmHu95_-AYQLVpc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On a Subclass of Approximable Functions on Closed Subsets</title><source>SpringerLink Journals</source><creator>Danielyan, Arthur A. ; Harutyunyan, Gohar</creator><creatorcontrib>Danielyan, Arthur A. ; Harutyunyan, Gohar</creatorcontrib><description>Let E be a closed non-Arakelian set and let A ( E ) be the class of all functions which are continuous on E and analytic in E °. The paper is devoted to the investigation of the functions belonging to A ( E ), which can be extended as functions of class A ( F ) for an Arakelian set F containing E .</description><identifier>ISSN: 1617-9447</identifier><identifier>EISSN: 2195-3724</identifier><identifier>DOI: 10.1007/BF03321792</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Computational Mathematics and Numerical Analysis ; Functions of a Complex Variable ; Mathematics</subject><ispartof>Computational methods and function theory, 2011-01, Vol.11 (1), p.123-133</ispartof><rights>Heldermann  Verlag 2011</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c226t-a4f4e7ece7ba35b3a2db41e5c20af34941a88a0673a8137e6b11055eebc6eca53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/BF03321792$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/BF03321792$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Danielyan, Arthur A.</creatorcontrib><creatorcontrib>Harutyunyan, Gohar</creatorcontrib><title>On a Subclass of Approximable Functions on Closed Subsets</title><title>Computational methods and function theory</title><addtitle>Comput. Methods Funct. Theory</addtitle><description>Let E be a closed non-Arakelian set and let A ( E ) be the class of all functions which are continuous on E and analytic in E °. The paper is devoted to the investigation of the functions belonging to A ( E ), which can be extended as functions of class A ( F ) for an Arakelian set F containing E .</description><subject>Analysis</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><issn>1617-9447</issn><issn>2195-3724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNptz81KxDAUBeAgCtbRjU-QtVLNb9Msx-KoMDALdV1uMrcyQ01K0oK-vR1GcOPqLu7H4RxCrjm744yZ-4cVk1JwY8UJKQS3upRGqFNS8Iqb0iplzslFznvGtLJSFsRuAgX6OjnfQ840dnQ5DCl-7T7B9UhXU_DjLob5E2jTx4zbA8445kty1kGf8er3Lsj76vGteS7Xm6eXZrkuvRDVWILqFBr0aBxI7SSIrVMctRcMOqms4lDXwCojoebSYOU4Z1ojOl-hBy0X5OaY61PMOWHXDmlul75bztrD6PZv9IxvjzjPKHxgavdxSmHu95_-AYQLVpc</recordid><startdate>20110101</startdate><enddate>20110101</enddate><creator>Danielyan, Arthur A.</creator><creator>Harutyunyan, Gohar</creator><general>Springer Berlin Heidelberg</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20110101</creationdate><title>On a Subclass of Approximable Functions on Closed Subsets</title><author>Danielyan, Arthur A. ; Harutyunyan, Gohar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c226t-a4f4e7ece7ba35b3a2db41e5c20af34941a88a0673a8137e6b11055eebc6eca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Analysis</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danielyan, Arthur A.</creatorcontrib><creatorcontrib>Harutyunyan, Gohar</creatorcontrib><collection>CrossRef</collection><jtitle>Computational methods and function theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danielyan, Arthur A.</au><au>Harutyunyan, Gohar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On a Subclass of Approximable Functions on Closed Subsets</atitle><jtitle>Computational methods and function theory</jtitle><stitle>Comput. Methods Funct. Theory</stitle><date>2011-01-01</date><risdate>2011</risdate><volume>11</volume><issue>1</issue><spage>123</spage><epage>133</epage><pages>123-133</pages><issn>1617-9447</issn><eissn>2195-3724</eissn><abstract>Let E be a closed non-Arakelian set and let A ( E ) be the class of all functions which are continuous on E and analytic in E °. The paper is devoted to the investigation of the functions belonging to A ( E ), which can be extended as functions of class A ( F ) for an Arakelian set F containing E .</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/BF03321792</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-9447
ispartof Computational methods and function theory, 2011-01, Vol.11 (1), p.123-133
issn 1617-9447
2195-3724
language eng
recordid cdi_crossref_primary_10_1007_BF03321792
source SpringerLink Journals
subjects Analysis
Computational Mathematics and Numerical Analysis
Functions of a Complex Variable
Mathematics
title On a Subclass of Approximable Functions on Closed Subsets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A54%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20a%20Subclass%20of%20Approximable%20Functions%20on%20Closed%20Subsets&rft.jtitle=Computational%20methods%20and%20function%20theory&rft.au=Danielyan,%20Arthur%20A.&rft.date=2011-01-01&rft.volume=11&rft.issue=1&rft.spage=123&rft.epage=133&rft.pages=123-133&rft.issn=1617-9447&rft.eissn=2195-3724&rft_id=info:doi/10.1007/BF03321792&rft_dat=%3Ccrossref_sprin%3E10_1007_BF03321792%3C/crossref_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true