Modulation of large conductance calcium-activated K+ channel by membrane-delimited protein kinase and phosphatase activities

Large conductance Ca(2+)-activated K+ channel was identified and studied in excised inside-out membrane patches of freshly dispersed smooth muscle cells from rabbit gastric antrum. The current-voltage relationship of the single channel was linear from -80 to +80 mV of pipette voltage in which single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pflügers Archiv 1994-11, Vol.429 (1), p.150-152
Hauptverfasser: Lee, M Y, Bang, H W, Lim, I J, Uhm, D Y, Rhee, S D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large conductance Ca(2+)-activated K+ channel was identified and studied in excised inside-out membrane patches of freshly dispersed smooth muscle cells from rabbit gastric antrum. The current-voltage relationship of the single channel was linear from -80 to +80 mV of pipette voltage in which single channel conductance was 249 +/- 17.8 pS (n = 19) in symmetrical concentration of K+ (145 mM) across the patch. Activity of the channel (NPo) depended not only on cytoplasmic calcium concentration but also on membrane potential. MgATP increased NPo in a dose-dependent manner and Mg2+ was prerequisite for the effect. Okadaic acid (100 nM), inhibitor of protein phosphatases, increased NPo further in the presence of MgATP. Therefore, it would be concluded that activity of the calcium-activated K+ channel in gastric smooth muscle cells was controlled by phosphorylation state of the channel protein and the state is further modulated by membrane-delimited protein kinase and protein phosphatase activities.
ISSN:0031-6768
1432-2013
DOI:10.1007/BF02584044