Fast Regression Estimates of Missing Data

A recent comparison of methods for estimating missing data concluded that when there is sufficient redundancy to justify using a more elaborate method than the mean of each variable, the principal components and regression methods are equally good and superior to the other methods investigated. Prin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Psychometrika 1976-06, Vol.41 (2), p.277-277
1. Verfasser: Koopman, Raymond F.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 277
container_issue 2
container_start_page 277
container_title Psychometrika
container_volume 41
creator Koopman, Raymond F.
description A recent comparison of methods for estimating missing data concluded that when there is sufficient redundancy to justify using a more elaborate method than the mean of each variable, the principal components and regression methods are equally good and superior to the other methods investigated. Principal components was preferred because of its “tremendous computational savings over the regression method.” This note proposes an alternate implementation of the regression method which should be slightly faster than the principal components method.
doi_str_mv 10.1007/BF02291846
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF02291846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1007_BF02291846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-3f50d27f0ac494894e418c68906549396b03e9f4e2aaa94cdc6e9d844aae56663</originalsourceid><addsrcrecordid>eNpFj8FKxDAURYMoWEc3fkG2CtWX5DVNljpOdWAGQXRdnmkyVHQqedn491YUXF24XA73CHGu4EoBtNe3HWjtlUN7ICrlLNTgHRyKCsCY2ihtjsUJ8xsAzCtXiYuOuMinuMuReZz2csVl_KASWU5Jbse53O_kHRU6FUeJ3jme_eVCvHSr5-VDvXm8Xy9vNnXQrS61SQ0Muk1AAT06jxGVC9Z5sA164-0rmOgTRk1EHsMQbPSDQySKjbXWLMTlLzfkiTnH1H_m-VH-6hX0P5L9v6T5BonfQi0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fast Regression Estimates of Missing Data</title><source>Springer Nature - Complete Springer Journals</source><creator>Koopman, Raymond F.</creator><creatorcontrib>Koopman, Raymond F.</creatorcontrib><description>A recent comparison of methods for estimating missing data concluded that when there is sufficient redundancy to justify using a more elaborate method than the mean of each variable, the principal components and regression methods are equally good and superior to the other methods investigated. Principal components was preferred because of its “tremendous computational savings over the regression method.” This note proposes an alternate implementation of the regression method which should be slightly faster than the principal components method.</description><identifier>ISSN: 0033-3123</identifier><identifier>EISSN: 1860-0980</identifier><identifier>DOI: 10.1007/BF02291846</identifier><language>eng</language><ispartof>Psychometrika, 1976-06, Vol.41 (2), p.277-277</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-3f50d27f0ac494894e418c68906549396b03e9f4e2aaa94cdc6e9d844aae56663</citedby><cites>FETCH-LOGICAL-c272t-3f50d27f0ac494894e418c68906549396b03e9f4e2aaa94cdc6e9d844aae56663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Koopman, Raymond F.</creatorcontrib><title>Fast Regression Estimates of Missing Data</title><title>Psychometrika</title><description>A recent comparison of methods for estimating missing data concluded that when there is sufficient redundancy to justify using a more elaborate method than the mean of each variable, the principal components and regression methods are equally good and superior to the other methods investigated. Principal components was preferred because of its “tremendous computational savings over the regression method.” This note proposes an alternate implementation of the regression method which should be slightly faster than the principal components method.</description><issn>0033-3123</issn><issn>1860-0980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1976</creationdate><recordtype>article</recordtype><recordid>eNpFj8FKxDAURYMoWEc3fkG2CtWX5DVNljpOdWAGQXRdnmkyVHQqedn491YUXF24XA73CHGu4EoBtNe3HWjtlUN7ICrlLNTgHRyKCsCY2ihtjsUJ8xsAzCtXiYuOuMinuMuReZz2csVl_KASWU5Jbse53O_kHRU6FUeJ3jme_eVCvHSr5-VDvXm8Xy9vNnXQrS61SQ0Muk1AAT06jxGVC9Z5sA164-0rmOgTRk1EHsMQbPSDQySKjbXWLMTlLzfkiTnH1H_m-VH-6hX0P5L9v6T5BonfQi0</recordid><startdate>197606</startdate><enddate>197606</enddate><creator>Koopman, Raymond F.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>197606</creationdate><title>Fast Regression Estimates of Missing Data</title><author>Koopman, Raymond F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-3f50d27f0ac494894e418c68906549396b03e9f4e2aaa94cdc6e9d844aae56663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1976</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koopman, Raymond F.</creatorcontrib><collection>CrossRef</collection><jtitle>Psychometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koopman, Raymond F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Regression Estimates of Missing Data</atitle><jtitle>Psychometrika</jtitle><date>1976-06</date><risdate>1976</risdate><volume>41</volume><issue>2</issue><spage>277</spage><epage>277</epage><pages>277-277</pages><issn>0033-3123</issn><eissn>1860-0980</eissn><abstract>A recent comparison of methods for estimating missing data concluded that when there is sufficient redundancy to justify using a more elaborate method than the mean of each variable, the principal components and regression methods are equally good and superior to the other methods investigated. Principal components was preferred because of its “tremendous computational savings over the regression method.” This note proposes an alternate implementation of the regression method which should be slightly faster than the principal components method.</abstract><doi>10.1007/BF02291846</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-3123
ispartof Psychometrika, 1976-06, Vol.41 (2), p.277-277
issn 0033-3123
1860-0980
language eng
recordid cdi_crossref_primary_10_1007_BF02291846
source Springer Nature - Complete Springer Journals
title Fast Regression Estimates of Missing Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Regression%20Estimates%20of%20Missing%20Data&rft.jtitle=Psychometrika&rft.au=Koopman,%20Raymond%20F.&rft.date=1976-06&rft.volume=41&rft.issue=2&rft.spage=277&rft.epage=277&rft.pages=277-277&rft.issn=0033-3123&rft.eissn=1860-0980&rft_id=info:doi/10.1007/BF02291846&rft_dat=%3Ccrossref%3E10_1007_BF02291846%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true