Inverse problem with two parametric families of planar orbits

As a possible extension of recent work, the following version of the inverse problem in dynamics is studied. Given a two-parametric family f(x,y,b) = c of plane curves, find an autonomous dynamical system for which these curves are orbits. A new linear partial differential equation of the first orde...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Celestial Mechanics 1983-10, Vol.31 (2), p.129-142
1. Verfasser: BOZIS, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 142
container_issue 2
container_start_page 129
container_title Celestial Mechanics
container_volume 31
creator BOZIS, G
description As a possible extension of recent work, the following version of the inverse problem in dynamics is studied. Given a two-parametric family f(x,y,b) = c of plane curves, find an autonomous dynamical system for which these curves are orbits. A new linear partial differential equation of the first order is derived for the force components X(x,y) and Y(x,y) corresponding to the given family. With the aid of this equation it is found that, depending on the given function f, the problem may or may not have a solution. Based on given criteria, a full classification is presented of the various cases which may arise.
doi_str_mv 10.1007/BF01686815
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01686815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23291651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-1c0a8fcc5c7e5a03de6c54f9720bda4c483d67fccdd51ef9a8dfd55be8f077643</originalsourceid><addsrcrecordid>eNpF0E9LxDAQBfAgCq5_Ln6CHMSDUJ20SZMePOji6sKCFz2XaTLBSLutSdfFb29lFz3N5TePx2PsQsCNANC3DwsQpSmNUAdsJpTOs0pqc8hmAGAyo4U8ZicpfQAUUks9Y3fL9RfFRHyIfdNSx7dhfOfjtucDRuxojMFyj11oAyXeez60uMbI-9iEMZ2xI49tovP9PWVvi8fX-XO2enlazu9Xmc1BjpmwgMZbq6wmhVA4Kq2SvtI5NA6llaZwpZ6Ac0qQr9A475RqyHjQupTFKbva5U4tPzeUxroLyVI7daF-k-q8yCtRKjHB6x20sU8pkq-HGDqM37WA-neh-n-hCV_uUzFZbH3EtQ3p76OSE8xV8QNlKmXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23291651</pqid></control><display><type>article</type><title>Inverse problem with two parametric families of planar orbits</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><creator>BOZIS, G</creator><creatorcontrib>BOZIS, G</creatorcontrib><description>As a possible extension of recent work, the following version of the inverse problem in dynamics is studied. Given a two-parametric family f(x,y,b) = c of plane curves, find an autonomous dynamical system for which these curves are orbits. A new linear partial differential equation of the first order is derived for the force components X(x,y) and Y(x,y) corresponding to the given family. With the aid of this equation it is found that, depending on the given function f, the problem may or may not have a solution. Based on given criteria, a full classification is presented of the various cases which may arise.</description><identifier>ISSN: 0008-8714</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/BF01686815</identifier><identifier>CODEN: CLMCAV</identifier><language>eng</language><publisher>Dordrecht: Reidel</publisher><subject>Astronomy ; Celestial mechanics (including n-body problems) ; Earth, ocean, space ; Exact sciences and technology ; Fundamental astronomy ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><ispartof>Celestial Mechanics, 1983-10, Vol.31 (2), p.129-142</ispartof><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c204t-1c0a8fcc5c7e5a03de6c54f9720bda4c483d67fccdd51ef9a8dfd55be8f077643</citedby><cites>FETCH-LOGICAL-c204t-1c0a8fcc5c7e5a03de6c54f9720bda4c483d67fccdd51ef9a8dfd55be8f077643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=9416825$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BOZIS, G</creatorcontrib><title>Inverse problem with two parametric families of planar orbits</title><title>Celestial Mechanics</title><description>As a possible extension of recent work, the following version of the inverse problem in dynamics is studied. Given a two-parametric family f(x,y,b) = c of plane curves, find an autonomous dynamical system for which these curves are orbits. A new linear partial differential equation of the first order is derived for the force components X(x,y) and Y(x,y) corresponding to the given family. With the aid of this equation it is found that, depending on the given function f, the problem may or may not have a solution. Based on given criteria, a full classification is presented of the various cases which may arise.</description><subject>Astronomy</subject><subject>Celestial mechanics (including n-body problems)</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental astronomy</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><issn>0008-8714</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNpF0E9LxDAQBfAgCq5_Ln6CHMSDUJ20SZMePOji6sKCFz2XaTLBSLutSdfFb29lFz3N5TePx2PsQsCNANC3DwsQpSmNUAdsJpTOs0pqc8hmAGAyo4U8ZicpfQAUUks9Y3fL9RfFRHyIfdNSx7dhfOfjtucDRuxojMFyj11oAyXeez60uMbI-9iEMZ2xI49tovP9PWVvi8fX-XO2enlazu9Xmc1BjpmwgMZbq6wmhVA4Kq2SvtI5NA6llaZwpZ6Ac0qQr9A475RqyHjQupTFKbva5U4tPzeUxroLyVI7daF-k-q8yCtRKjHB6x20sU8pkq-HGDqM37WA-neh-n-hCV_uUzFZbH3EtQ3p76OSE8xV8QNlKmXg</recordid><startdate>198310</startdate><enddate>198310</enddate><creator>BOZIS, G</creator><general>Reidel</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>198310</creationdate><title>Inverse problem with two parametric families of planar orbits</title><author>BOZIS, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-1c0a8fcc5c7e5a03de6c54f9720bda4c483d67fccdd51ef9a8dfd55be8f077643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Astronomy</topic><topic>Celestial mechanics (including n-body problems)</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental astronomy</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOZIS, G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Celestial Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOZIS, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse problem with two parametric families of planar orbits</atitle><jtitle>Celestial Mechanics</jtitle><date>1983-10</date><risdate>1983</risdate><volume>31</volume><issue>2</issue><spage>129</spage><epage>142</epage><pages>129-142</pages><issn>0008-8714</issn><eissn>1572-9478</eissn><coden>CLMCAV</coden><abstract>As a possible extension of recent work, the following version of the inverse problem in dynamics is studied. Given a two-parametric family f(x,y,b) = c of plane curves, find an autonomous dynamical system for which these curves are orbits. A new linear partial differential equation of the first order is derived for the force components X(x,y) and Y(x,y) corresponding to the given family. With the aid of this equation it is found that, depending on the given function f, the problem may or may not have a solution. Based on given criteria, a full classification is presented of the various cases which may arise.</abstract><cop>Dordrecht</cop><pub>Reidel</pub><doi>10.1007/BF01686815</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-8714
ispartof Celestial Mechanics, 1983-10, Vol.31 (2), p.129-142
issn 0008-8714
1572-9478
language eng
recordid cdi_crossref_primary_10_1007_BF01686815
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals
subjects Astronomy
Celestial mechanics (including n-body problems)
Earth, ocean, space
Exact sciences and technology
Fundamental astronomy
Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations
title Inverse problem with two parametric families of planar orbits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20problem%20with%20two%20parametric%20families%20of%20planar%20orbits&rft.jtitle=Celestial%20Mechanics&rft.au=BOZIS,%20G&rft.date=1983-10&rft.volume=31&rft.issue=2&rft.spage=129&rft.epage=142&rft.pages=129-142&rft.issn=0008-8714&rft.eissn=1572-9478&rft.coden=CLMCAV&rft_id=info:doi/10.1007/BF01686815&rft_dat=%3Cproquest_cross%3E23291651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23291651&rft_id=info:pmid/&rfr_iscdi=true