Inverse problem with two parametric families of planar orbits
As a possible extension of recent work, the following version of the inverse problem in dynamics is studied. Given a two-parametric family f(x,y,b) = c of plane curves, find an autonomous dynamical system for which these curves are orbits. A new linear partial differential equation of the first orde...
Gespeichert in:
Veröffentlicht in: | Celestial Mechanics 1983-10, Vol.31 (2), p.129-142 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 142 |
---|---|
container_issue | 2 |
container_start_page | 129 |
container_title | Celestial Mechanics |
container_volume | 31 |
creator | BOZIS, G |
description | As a possible extension of recent work, the following version of the inverse problem in dynamics is studied. Given a two-parametric family f(x,y,b) = c of plane curves, find an autonomous dynamical system for which these curves are orbits. A new linear partial differential equation of the first order is derived for the force components X(x,y) and Y(x,y) corresponding to the given family. With the aid of this equation it is found that, depending on the given function f, the problem may or may not have a solution. Based on given criteria, a full classification is presented of the various cases which may arise. |
doi_str_mv | 10.1007/BF01686815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01686815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>23291651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-1c0a8fcc5c7e5a03de6c54f9720bda4c483d67fccdd51ef9a8dfd55be8f077643</originalsourceid><addsrcrecordid>eNpF0E9LxDAQBfAgCq5_Ln6CHMSDUJ20SZMePOji6sKCFz2XaTLBSLutSdfFb29lFz3N5TePx2PsQsCNANC3DwsQpSmNUAdsJpTOs0pqc8hmAGAyo4U8ZicpfQAUUks9Y3fL9RfFRHyIfdNSx7dhfOfjtucDRuxojMFyj11oAyXeez60uMbI-9iEMZ2xI49tovP9PWVvi8fX-XO2enlazu9Xmc1BjpmwgMZbq6wmhVA4Kq2SvtI5NA6llaZwpZ6Ac0qQr9A475RqyHjQupTFKbva5U4tPzeUxroLyVI7daF-k-q8yCtRKjHB6x20sU8pkq-HGDqM37WA-neh-n-hCV_uUzFZbH3EtQ3p76OSE8xV8QNlKmXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>23291651</pqid></control><display><type>article</type><title>Inverse problem with two parametric families of planar orbits</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><creator>BOZIS, G</creator><creatorcontrib>BOZIS, G</creatorcontrib><description>As a possible extension of recent work, the following version of the inverse problem in dynamics is studied. Given a two-parametric family f(x,y,b) = c of plane curves, find an autonomous dynamical system for which these curves are orbits. A new linear partial differential equation of the first order is derived for the force components X(x,y) and Y(x,y) corresponding to the given family. With the aid of this equation it is found that, depending on the given function f, the problem may or may not have a solution. Based on given criteria, a full classification is presented of the various cases which may arise.</description><identifier>ISSN: 0008-8714</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/BF01686815</identifier><identifier>CODEN: CLMCAV</identifier><language>eng</language><publisher>Dordrecht: Reidel</publisher><subject>Astronomy ; Celestial mechanics (including n-body problems) ; Earth, ocean, space ; Exact sciences and technology ; Fundamental astronomy ; Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><ispartof>Celestial Mechanics, 1983-10, Vol.31 (2), p.129-142</ispartof><rights>1984 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c204t-1c0a8fcc5c7e5a03de6c54f9720bda4c483d67fccdd51ef9a8dfd55be8f077643</citedby><cites>FETCH-LOGICAL-c204t-1c0a8fcc5c7e5a03de6c54f9720bda4c483d67fccdd51ef9a8dfd55be8f077643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=9416825$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>BOZIS, G</creatorcontrib><title>Inverse problem with two parametric families of planar orbits</title><title>Celestial Mechanics</title><description>As a possible extension of recent work, the following version of the inverse problem in dynamics is studied. Given a two-parametric family f(x,y,b) = c of plane curves, find an autonomous dynamical system for which these curves are orbits. A new linear partial differential equation of the first order is derived for the force components X(x,y) and Y(x,y) corresponding to the given family. With the aid of this equation it is found that, depending on the given function f, the problem may or may not have a solution. Based on given criteria, a full classification is presented of the various cases which may arise.</description><subject>Astronomy</subject><subject>Celestial mechanics (including n-body problems)</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Fundamental astronomy</subject><subject>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</subject><issn>0008-8714</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1983</creationdate><recordtype>article</recordtype><recordid>eNpF0E9LxDAQBfAgCq5_Ln6CHMSDUJ20SZMePOji6sKCFz2XaTLBSLutSdfFb29lFz3N5TePx2PsQsCNANC3DwsQpSmNUAdsJpTOs0pqc8hmAGAyo4U8ZicpfQAUUks9Y3fL9RfFRHyIfdNSx7dhfOfjtucDRuxojMFyj11oAyXeez60uMbI-9iEMZ2xI49tovP9PWVvi8fX-XO2enlazu9Xmc1BjpmwgMZbq6wmhVA4Kq2SvtI5NA6llaZwpZ6Ac0qQr9A475RqyHjQupTFKbva5U4tPzeUxroLyVI7daF-k-q8yCtRKjHB6x20sU8pkq-HGDqM37WA-neh-n-hCV_uUzFZbH3EtQ3p76OSE8xV8QNlKmXg</recordid><startdate>198310</startdate><enddate>198310</enddate><creator>BOZIS, G</creator><general>Reidel</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>198310</creationdate><title>Inverse problem with two parametric families of planar orbits</title><author>BOZIS, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-1c0a8fcc5c7e5a03de6c54f9720bda4c483d67fccdd51ef9a8dfd55be8f077643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1983</creationdate><topic>Astronomy</topic><topic>Celestial mechanics (including n-body problems)</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Fundamental astronomy</topic><topic>Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BOZIS, G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Celestial Mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BOZIS, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inverse problem with two parametric families of planar orbits</atitle><jtitle>Celestial Mechanics</jtitle><date>1983-10</date><risdate>1983</risdate><volume>31</volume><issue>2</issue><spage>129</spage><epage>142</epage><pages>129-142</pages><issn>0008-8714</issn><eissn>1572-9478</eissn><coden>CLMCAV</coden><abstract>As a possible extension of recent work, the following version of the inverse problem in dynamics is studied. Given a two-parametric family f(x,y,b) = c of plane curves, find an autonomous dynamical system for which these curves are orbits. A new linear partial differential equation of the first order is derived for the force components X(x,y) and Y(x,y) corresponding to the given family. With the aid of this equation it is found that, depending on the given function f, the problem may or may not have a solution. Based on given criteria, a full classification is presented of the various cases which may arise.</abstract><cop>Dordrecht</cop><pub>Reidel</pub><doi>10.1007/BF01686815</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-8714 |
ispartof | Celestial Mechanics, 1983-10, Vol.31 (2), p.129-142 |
issn | 0008-8714 1572-9478 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF01686815 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals |
subjects | Astronomy Celestial mechanics (including n-body problems) Earth, ocean, space Exact sciences and technology Fundamental astronomy Fundamental astronomy and astrophysics. Instrumentation, techniques, and astronomical observations |
title | Inverse problem with two parametric families of planar orbits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inverse%20problem%20with%20two%20parametric%20families%20of%20planar%20orbits&rft.jtitle=Celestial%20Mechanics&rft.au=BOZIS,%20G&rft.date=1983-10&rft.volume=31&rft.issue=2&rft.spage=129&rft.epage=142&rft.pages=129-142&rft.issn=0008-8714&rft.eissn=1572-9478&rft.coden=CLMCAV&rft_id=info:doi/10.1007/BF01686815&rft_dat=%3Cproquest_cross%3E23291651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=23291651&rft_id=info:pmid/&rfr_iscdi=true |