The dose-response relationship for ethyl methanesulfonate-induced mutations at the hypoxanthine-guanine phosphoribosyl transferase locus in Chinese hamster ovary cells
The frequency of ethyl methanesulfonate (EMS)-induced mutations to 6-thioguanine resistance in a Chinese hamster ovary cells clone K1-BH4 was studied at many EMS doses including the minimally lethal range (0-100 microng/ml) as well as the exponential killing portion (100-800 microng/ml) of the survi...
Gespeichert in:
Veröffentlicht in: | Somatic Cell Genetics 1975-07, Vol.1 (3), p.247-261 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The frequency of ethyl methanesulfonate (EMS)-induced mutations to 6-thioguanine resistance in a Chinese hamster ovary cells clone K1-BH4 was studied at many EMS doses including the minimally lethal range (0-100 microng/ml) as well as the exponential killing portion (100-800 microng/ml) of the survival curve. The mutation frequency increases approximately in proportion with increasing EMS concentration at a fixed treatment time. The pooled data for the observed mutation frequency, f(X), as a function of EMS dose X, is adequately described by a linear function f(X)=10(-6)(8.73+3.45 X), where 0 less than or equal to X less than or equal to 800 microng/ml. One interpretation of the linear dose-response is that, as a result of EMS treatment, ethylation of cellular constituents occurs, which is directly responsible for the mutation. Biochemical analyses demonstrate that most of the randomly isolated 6-thioguanine-resistant variants possess a highly reduced or undetectable level of HGPRT activity suggesting that the EMS-induced mutations to 6-thioguanine resistance affect primarily, if not exclusively, the HGPRT locus. |
---|---|
ISSN: | 0098-0366 1572-9931 |
DOI: | 10.1007/BF01538449 |