Thermal conductivity of CVD diamond films

Diamond films 60 and 170 {mu}m in thickness were grown by PACVD (plasma-assisted chemical vapor deposition) under similar conditions. The thermal diffusivity of these freestanding films was measured between 100 and 800 K using AC calorimetry. Radiation heat loss from the surface was estimated by ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Thermophysics 1996-05, Vol.17 (3), p.695-704
Hauptverfasser: CHAE, H. B, PARK, K. H, SEONG, D. J, KIM, J. C, BAIK, Y. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 704
container_issue 3
container_start_page 695
container_title International Journal of Thermophysics
container_volume 17
creator CHAE, H. B
PARK, K. H
SEONG, D. J
KIM, J. C
BAIK, Y. J
description Diamond films 60 and 170 {mu}m in thickness were grown by PACVD (plasma-assisted chemical vapor deposition) under similar conditions. The thermal diffusivity of these freestanding films was measured between 100 and 800 K using AC calorimetry. Radiation heat loss from the surface was estimated by analyzing both the amplitude and the phase shift of a lock-in amplifier signal. Thermal conductivity was calculated using the specific heat data of natural diamond. At room temperature, the thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}cm{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the CVD diamond films is similar to that of natural diamond. Phonon scattering processes are considered using the Debye model. The microsize of the grain boundary has a significant effect on the mean free path of phonons at low temperatures. The grain in CVD diamond film is grown as a columnar structure. Thus, the thicker film has the larger man grain size and the higher thermal conductivity. Scanning electron microscopy (SEM) and Raman spectroscopy were used to study the microstructure of the CVD diamond films. In this experiment, we evaluated the quality of CVD diamond film of the whole sample by measuring the thermal conductivity.
doi_str_mv 10.1007/BF01441515
format Article
fullrecord <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01441515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-efbd1affe330e5c1effc5c9dc843c3bd4d71cf37ea1cc732a5b6570d5df8f8e33</originalsourceid><addsrcrecordid>eNpFkEFLw0AUhBdRMFYv_oIIXhSi72Wz3c1Rq1Wh4KWKt7B9u4-uJE3JxkL_vZGIngaGb4ZhhDhHuEEAfXs_BywKVKgORIJK51mppvpQJIClysrcfByLkxg_AaDUpUzE1XLtu8bWKbUb90V92IV-n7aczt4fUhdsM9gph7qJp-KIbR392a9OxNv8cTl7zhavTy-zu0VGuSn6zPPKoWX2UoJXhJ6ZFJWOTCFJrlzhNBJL7S0SaZlbtZoqDU45NmyG1ERcjL1t7EMVKfSe1sO6jae-KjQaCQNzPTLUtTF2nqttFxrb7SuE6ueI6v-IAb4c4a2NZGvu7IZC_EtI0Aa0kt9aPlyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal conductivity of CVD diamond films</title><source>SpringerLink Journals - AutoHoldings</source><creator>CHAE, H. B ; PARK, K. H ; SEONG, D. J ; KIM, J. C ; BAIK, Y. J</creator><creatorcontrib>CHAE, H. B ; PARK, K. H ; SEONG, D. J ; KIM, J. C ; BAIK, Y. J</creatorcontrib><description>Diamond films 60 and 170 {mu}m in thickness were grown by PACVD (plasma-assisted chemical vapor deposition) under similar conditions. The thermal diffusivity of these freestanding films was measured between 100 and 800 K using AC calorimetry. Radiation heat loss from the surface was estimated by analyzing both the amplitude and the phase shift of a lock-in amplifier signal. Thermal conductivity was calculated using the specific heat data of natural diamond. At room temperature, the thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}cm{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the CVD diamond films is similar to that of natural diamond. Phonon scattering processes are considered using the Debye model. The microsize of the grain boundary has a significant effect on the mean free path of phonons at low temperatures. The grain in CVD diamond film is grown as a columnar structure. Thus, the thicker film has the larger man grain size and the higher thermal conductivity. Scanning electron microscopy (SEM) and Raman spectroscopy were used to study the microstructure of the CVD diamond films. In this experiment, we evaluated the quality of CVD diamond film of the whole sample by measuring the thermal conductivity.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/BF01441515</identifier><identifier>CODEN: IJTHDY</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>40 CHEMISTRY ; CALORIMETRY ; CHEMICAL VAPOR DEPOSITION ; Condensed matter: structure, mechanical and thermal properties ; DIAGRAMS ; DIAMONDS ; Exact sciences and technology ; EXPERIMENTAL DATA ; GRAIN BOUNDARIES ; MATERIALS SCIENCE ; Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves ; PHYSICS ; TEMPERATURE DEPENDENCE ; TEMPERATURE RANGE 0065-0273 K ; TEMPERATURE RANGE 0273-0400 K ; TEMPERATURE RANGE 0400-1000 K ; THERMAL CONDUCTIVITY ; THERMAL DIFFUSIVITY ; THIN FILMS ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>International Journal of Thermophysics, 1996-05, Vol.17 (3), p.695-704</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-efbd1affe330e5c1effc5c9dc843c3bd4d71cf37ea1cc732a5b6570d5df8f8e33</citedby><cites>FETCH-LOGICAL-c284t-efbd1affe330e5c1effc5c9dc843c3bd4d71cf37ea1cc732a5b6570d5df8f8e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3078075$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/471830$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>CHAE, H. B</creatorcontrib><creatorcontrib>PARK, K. H</creatorcontrib><creatorcontrib>SEONG, D. J</creatorcontrib><creatorcontrib>KIM, J. C</creatorcontrib><creatorcontrib>BAIK, Y. J</creatorcontrib><title>Thermal conductivity of CVD diamond films</title><title>International Journal of Thermophysics</title><description>Diamond films 60 and 170 {mu}m in thickness were grown by PACVD (plasma-assisted chemical vapor deposition) under similar conditions. The thermal diffusivity of these freestanding films was measured between 100 and 800 K using AC calorimetry. Radiation heat loss from the surface was estimated by analyzing both the amplitude and the phase shift of a lock-in amplifier signal. Thermal conductivity was calculated using the specific heat data of natural diamond. At room temperature, the thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}cm{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the CVD diamond films is similar to that of natural diamond. Phonon scattering processes are considered using the Debye model. The microsize of the grain boundary has a significant effect on the mean free path of phonons at low temperatures. The grain in CVD diamond film is grown as a columnar structure. Thus, the thicker film has the larger man grain size and the higher thermal conductivity. Scanning electron microscopy (SEM) and Raman spectroscopy were used to study the microstructure of the CVD diamond films. In this experiment, we evaluated the quality of CVD diamond film of the whole sample by measuring the thermal conductivity.</description><subject>40 CHEMISTRY</subject><subject>CALORIMETRY</subject><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>DIAGRAMS</subject><subject>DIAMONDS</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>GRAIN BOUNDARIES</subject><subject>MATERIALS SCIENCE</subject><subject>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</subject><subject>PHYSICS</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TEMPERATURE RANGE 0065-0273 K</subject><subject>TEMPERATURE RANGE 0273-0400 K</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THERMAL DIFFUSIVITY</subject><subject>THIN FILMS</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLw0AUhBdRMFYv_oIIXhSi72Wz3c1Rq1Wh4KWKt7B9u4-uJE3JxkL_vZGIngaGb4ZhhDhHuEEAfXs_BywKVKgORIJK51mppvpQJIClysrcfByLkxg_AaDUpUzE1XLtu8bWKbUb90V92IV-n7aczt4fUhdsM9gph7qJp-KIbR392a9OxNv8cTl7zhavTy-zu0VGuSn6zPPKoWX2UoJXhJ6ZFJWOTCFJrlzhNBJL7S0SaZlbtZoqDU45NmyG1ERcjL1t7EMVKfSe1sO6jae-KjQaCQNzPTLUtTF2nqttFxrb7SuE6ueI6v-IAb4c4a2NZGvu7IZC_EtI0Aa0kt9aPlyQ</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>CHAE, H. B</creator><creator>PARK, K. H</creator><creator>SEONG, D. J</creator><creator>KIM, J. C</creator><creator>BAIK, Y. J</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19960501</creationdate><title>Thermal conductivity of CVD diamond films</title><author>CHAE, H. B ; PARK, K. H ; SEONG, D. J ; KIM, J. C ; BAIK, Y. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-efbd1affe330e5c1effc5c9dc843c3bd4d71cf37ea1cc732a5b6570d5df8f8e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>40 CHEMISTRY</topic><topic>CALORIMETRY</topic><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>DIAGRAMS</topic><topic>DIAMONDS</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>GRAIN BOUNDARIES</topic><topic>MATERIALS SCIENCE</topic><topic>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</topic><topic>PHYSICS</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TEMPERATURE RANGE 0065-0273 K</topic><topic>TEMPERATURE RANGE 0273-0400 K</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THERMAL DIFFUSIVITY</topic><topic>THIN FILMS</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHAE, H. B</creatorcontrib><creatorcontrib>PARK, K. H</creatorcontrib><creatorcontrib>SEONG, D. J</creatorcontrib><creatorcontrib>KIM, J. C</creatorcontrib><creatorcontrib>BAIK, Y. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>International Journal of Thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHAE, H. B</au><au>PARK, K. H</au><au>SEONG, D. J</au><au>KIM, J. C</au><au>BAIK, Y. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of CVD diamond films</atitle><jtitle>International Journal of Thermophysics</jtitle><date>1996-05-01</date><risdate>1996</risdate><volume>17</volume><issue>3</issue><spage>695</spage><epage>704</epage><pages>695-704</pages><issn>0195-928X</issn><eissn>1572-9567</eissn><coden>IJTHDY</coden><abstract>Diamond films 60 and 170 {mu}m in thickness were grown by PACVD (plasma-assisted chemical vapor deposition) under similar conditions. The thermal diffusivity of these freestanding films was measured between 100 and 800 K using AC calorimetry. Radiation heat loss from the surface was estimated by analyzing both the amplitude and the phase shift of a lock-in amplifier signal. Thermal conductivity was calculated using the specific heat data of natural diamond. At room temperature, the thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}cm{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the CVD diamond films is similar to that of natural diamond. Phonon scattering processes are considered using the Debye model. The microsize of the grain boundary has a significant effect on the mean free path of phonons at low temperatures. The grain in CVD diamond film is grown as a columnar structure. Thus, the thicker film has the larger man grain size and the higher thermal conductivity. Scanning electron microscopy (SEM) and Raman spectroscopy were used to study the microstructure of the CVD diamond films. In this experiment, we evaluated the quality of CVD diamond film of the whole sample by measuring the thermal conductivity.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/BF01441515</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0195-928X
ispartof International Journal of Thermophysics, 1996-05, Vol.17 (3), p.695-704
issn 0195-928X
1572-9567
language eng
recordid cdi_crossref_primary_10_1007_BF01441515
source SpringerLink Journals - AutoHoldings
subjects 40 CHEMISTRY
CALORIMETRY
CHEMICAL VAPOR DEPOSITION
Condensed matter: structure, mechanical and thermal properties
DIAGRAMS
DIAMONDS
Exact sciences and technology
EXPERIMENTAL DATA
GRAIN BOUNDARIES
MATERIALS SCIENCE
Nonelectronic thermal conduction and heat-pulse propagation in solids
thermal waves
PHYSICS
TEMPERATURE DEPENDENCE
TEMPERATURE RANGE 0065-0273 K
TEMPERATURE RANGE 0273-0400 K
TEMPERATURE RANGE 0400-1000 K
THERMAL CONDUCTIVITY
THERMAL DIFFUSIVITY
THIN FILMS
Transport properties of condensed matter (nonelectronic)
title Thermal conductivity of CVD diamond films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20CVD%20diamond%20films&rft.jtitle=International%20Journal%20of%20Thermophysics&rft.au=CHAE,%20H.%20B&rft.date=1996-05-01&rft.volume=17&rft.issue=3&rft.spage=695&rft.epage=704&rft.pages=695-704&rft.issn=0195-928X&rft.eissn=1572-9567&rft.coden=IJTHDY&rft_id=info:doi/10.1007/BF01441515&rft_dat=%3Cpascalfrancis_osti_%3E3078075%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true