Thermal conductivity of CVD diamond films
Diamond films 60 and 170 {mu}m in thickness were grown by PACVD (plasma-assisted chemical vapor deposition) under similar conditions. The thermal diffusivity of these freestanding films was measured between 100 and 800 K using AC calorimetry. Radiation heat loss from the surface was estimated by ana...
Gespeichert in:
Veröffentlicht in: | International Journal of Thermophysics 1996-05, Vol.17 (3), p.695-704 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 704 |
---|---|
container_issue | 3 |
container_start_page | 695 |
container_title | International Journal of Thermophysics |
container_volume | 17 |
creator | CHAE, H. B PARK, K. H SEONG, D. J KIM, J. C BAIK, Y. J |
description | Diamond films 60 and 170 {mu}m in thickness were grown by PACVD (plasma-assisted chemical vapor deposition) under similar conditions. The thermal diffusivity of these freestanding films was measured between 100 and 800 K using AC calorimetry. Radiation heat loss from the surface was estimated by analyzing both the amplitude and the phase shift of a lock-in amplifier signal. Thermal conductivity was calculated using the specific heat data of natural diamond. At room temperature, the thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}cm{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the CVD diamond films is similar to that of natural diamond. Phonon scattering processes are considered using the Debye model. The microsize of the grain boundary has a significant effect on the mean free path of phonons at low temperatures. The grain in CVD diamond film is grown as a columnar structure. Thus, the thicker film has the larger man grain size and the higher thermal conductivity. Scanning electron microscopy (SEM) and Raman spectroscopy were used to study the microstructure of the CVD diamond films. In this experiment, we evaluated the quality of CVD diamond film of the whole sample by measuring the thermal conductivity. |
doi_str_mv | 10.1007/BF01441515 |
format | Article |
fullrecord | <record><control><sourceid>pascalfrancis_osti_</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01441515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3078075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c284t-efbd1affe330e5c1effc5c9dc843c3bd4d71cf37ea1cc732a5b6570d5df8f8e33</originalsourceid><addsrcrecordid>eNpFkEFLw0AUhBdRMFYv_oIIXhSi72Wz3c1Rq1Wh4KWKt7B9u4-uJE3JxkL_vZGIngaGb4ZhhDhHuEEAfXs_BywKVKgORIJK51mppvpQJIClysrcfByLkxg_AaDUpUzE1XLtu8bWKbUb90V92IV-n7aczt4fUhdsM9gph7qJp-KIbR392a9OxNv8cTl7zhavTy-zu0VGuSn6zPPKoWX2UoJXhJ6ZFJWOTCFJrlzhNBJL7S0SaZlbtZoqDU45NmyG1ERcjL1t7EMVKfSe1sO6jae-KjQaCQNzPTLUtTF2nqttFxrb7SuE6ueI6v-IAb4c4a2NZGvu7IZC_EtI0Aa0kt9aPlyQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal conductivity of CVD diamond films</title><source>SpringerLink Journals - AutoHoldings</source><creator>CHAE, H. B ; PARK, K. H ; SEONG, D. J ; KIM, J. C ; BAIK, Y. J</creator><creatorcontrib>CHAE, H. B ; PARK, K. H ; SEONG, D. J ; KIM, J. C ; BAIK, Y. J</creatorcontrib><description>Diamond films 60 and 170 {mu}m in thickness were grown by PACVD (plasma-assisted chemical vapor deposition) under similar conditions. The thermal diffusivity of these freestanding films was measured between 100 and 800 K using AC calorimetry. Radiation heat loss from the surface was estimated by analyzing both the amplitude and the phase shift of a lock-in amplifier signal. Thermal conductivity was calculated using the specific heat data of natural diamond. At room temperature, the thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}cm{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the CVD diamond films is similar to that of natural diamond. Phonon scattering processes are considered using the Debye model. The microsize of the grain boundary has a significant effect on the mean free path of phonons at low temperatures. The grain in CVD diamond film is grown as a columnar structure. Thus, the thicker film has the larger man grain size and the higher thermal conductivity. Scanning electron microscopy (SEM) and Raman spectroscopy were used to study the microstructure of the CVD diamond films. In this experiment, we evaluated the quality of CVD diamond film of the whole sample by measuring the thermal conductivity.</description><identifier>ISSN: 0195-928X</identifier><identifier>EISSN: 1572-9567</identifier><identifier>DOI: 10.1007/BF01441515</identifier><identifier>CODEN: IJTHDY</identifier><language>eng</language><publisher>New York, NY: Springer</publisher><subject>40 CHEMISTRY ; CALORIMETRY ; CHEMICAL VAPOR DEPOSITION ; Condensed matter: structure, mechanical and thermal properties ; DIAGRAMS ; DIAMONDS ; Exact sciences and technology ; EXPERIMENTAL DATA ; GRAIN BOUNDARIES ; MATERIALS SCIENCE ; Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves ; PHYSICS ; TEMPERATURE DEPENDENCE ; TEMPERATURE RANGE 0065-0273 K ; TEMPERATURE RANGE 0273-0400 K ; TEMPERATURE RANGE 0400-1000 K ; THERMAL CONDUCTIVITY ; THERMAL DIFFUSIVITY ; THIN FILMS ; Transport properties of condensed matter (nonelectronic)</subject><ispartof>International Journal of Thermophysics, 1996-05, Vol.17 (3), p.695-704</ispartof><rights>1996 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c284t-efbd1affe330e5c1effc5c9dc843c3bd4d71cf37ea1cc732a5b6570d5df8f8e33</citedby><cites>FETCH-LOGICAL-c284t-efbd1affe330e5c1effc5c9dc843c3bd4d71cf37ea1cc732a5b6570d5df8f8e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,885,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3078075$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/471830$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>CHAE, H. B</creatorcontrib><creatorcontrib>PARK, K. H</creatorcontrib><creatorcontrib>SEONG, D. J</creatorcontrib><creatorcontrib>KIM, J. C</creatorcontrib><creatorcontrib>BAIK, Y. J</creatorcontrib><title>Thermal conductivity of CVD diamond films</title><title>International Journal of Thermophysics</title><description>Diamond films 60 and 170 {mu}m in thickness were grown by PACVD (plasma-assisted chemical vapor deposition) under similar conditions. The thermal diffusivity of these freestanding films was measured between 100 and 800 K using AC calorimetry. Radiation heat loss from the surface was estimated by analyzing both the amplitude and the phase shift of a lock-in amplifier signal. Thermal conductivity was calculated using the specific heat data of natural diamond. At room temperature, the thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}cm{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the CVD diamond films is similar to that of natural diamond. Phonon scattering processes are considered using the Debye model. The microsize of the grain boundary has a significant effect on the mean free path of phonons at low temperatures. The grain in CVD diamond film is grown as a columnar structure. Thus, the thicker film has the larger man grain size and the higher thermal conductivity. Scanning electron microscopy (SEM) and Raman spectroscopy were used to study the microstructure of the CVD diamond films. In this experiment, we evaluated the quality of CVD diamond film of the whole sample by measuring the thermal conductivity.</description><subject>40 CHEMISTRY</subject><subject>CALORIMETRY</subject><subject>CHEMICAL VAPOR DEPOSITION</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>DIAGRAMS</subject><subject>DIAMONDS</subject><subject>Exact sciences and technology</subject><subject>EXPERIMENTAL DATA</subject><subject>GRAIN BOUNDARIES</subject><subject>MATERIALS SCIENCE</subject><subject>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</subject><subject>PHYSICS</subject><subject>TEMPERATURE DEPENDENCE</subject><subject>TEMPERATURE RANGE 0065-0273 K</subject><subject>TEMPERATURE RANGE 0273-0400 K</subject><subject>TEMPERATURE RANGE 0400-1000 K</subject><subject>THERMAL CONDUCTIVITY</subject><subject>THERMAL DIFFUSIVITY</subject><subject>THIN FILMS</subject><subject>Transport properties of condensed matter (nonelectronic)</subject><issn>0195-928X</issn><issn>1572-9567</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><recordid>eNpFkEFLw0AUhBdRMFYv_oIIXhSi72Wz3c1Rq1Wh4KWKt7B9u4-uJE3JxkL_vZGIngaGb4ZhhDhHuEEAfXs_BywKVKgORIJK51mppvpQJIClysrcfByLkxg_AaDUpUzE1XLtu8bWKbUb90V92IV-n7aczt4fUhdsM9gph7qJp-KIbR392a9OxNv8cTl7zhavTy-zu0VGuSn6zPPKoWX2UoJXhJ6ZFJWOTCFJrlzhNBJL7S0SaZlbtZoqDU45NmyG1ERcjL1t7EMVKfSe1sO6jae-KjQaCQNzPTLUtTF2nqttFxrb7SuE6ueI6v-IAb4c4a2NZGvu7IZC_EtI0Aa0kt9aPlyQ</recordid><startdate>19960501</startdate><enddate>19960501</enddate><creator>CHAE, H. B</creator><creator>PARK, K. H</creator><creator>SEONG, D. J</creator><creator>KIM, J. C</creator><creator>BAIK, Y. J</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope></search><sort><creationdate>19960501</creationdate><title>Thermal conductivity of CVD diamond films</title><author>CHAE, H. B ; PARK, K. H ; SEONG, D. J ; KIM, J. C ; BAIK, Y. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c284t-efbd1affe330e5c1effc5c9dc843c3bd4d71cf37ea1cc732a5b6570d5df8f8e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>40 CHEMISTRY</topic><topic>CALORIMETRY</topic><topic>CHEMICAL VAPOR DEPOSITION</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>DIAGRAMS</topic><topic>DIAMONDS</topic><topic>Exact sciences and technology</topic><topic>EXPERIMENTAL DATA</topic><topic>GRAIN BOUNDARIES</topic><topic>MATERIALS SCIENCE</topic><topic>Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves</topic><topic>PHYSICS</topic><topic>TEMPERATURE DEPENDENCE</topic><topic>TEMPERATURE RANGE 0065-0273 K</topic><topic>TEMPERATURE RANGE 0273-0400 K</topic><topic>TEMPERATURE RANGE 0400-1000 K</topic><topic>THERMAL CONDUCTIVITY</topic><topic>THERMAL DIFFUSIVITY</topic><topic>THIN FILMS</topic><topic>Transport properties of condensed matter (nonelectronic)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHAE, H. B</creatorcontrib><creatorcontrib>PARK, K. H</creatorcontrib><creatorcontrib>SEONG, D. J</creatorcontrib><creatorcontrib>KIM, J. C</creatorcontrib><creatorcontrib>BAIK, Y. J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><jtitle>International Journal of Thermophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHAE, H. B</au><au>PARK, K. H</au><au>SEONG, D. J</au><au>KIM, J. C</au><au>BAIK, Y. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of CVD diamond films</atitle><jtitle>International Journal of Thermophysics</jtitle><date>1996-05-01</date><risdate>1996</risdate><volume>17</volume><issue>3</issue><spage>695</spage><epage>704</epage><pages>695-704</pages><issn>0195-928X</issn><eissn>1572-9567</eissn><coden>IJTHDY</coden><abstract>Diamond films 60 and 170 {mu}m in thickness were grown by PACVD (plasma-assisted chemical vapor deposition) under similar conditions. The thermal diffusivity of these freestanding films was measured between 100 and 800 K using AC calorimetry. Radiation heat loss from the surface was estimated by analyzing both the amplitude and the phase shift of a lock-in amplifier signal. Thermal conductivity was calculated using the specific heat data of natural diamond. At room temperature, the thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}cm{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the 60 and 170 {mu}m films is 9 and 16 W {center_dot}{sup {minus}1}{center_dot}K{sup {minus}1} respectively, which is 40-70% that of natural diamond. The temperature dependence of thermal conductivity of the CVD diamond films is similar to that of natural diamond. Phonon scattering processes are considered using the Debye model. The microsize of the grain boundary has a significant effect on the mean free path of phonons at low temperatures. The grain in CVD diamond film is grown as a columnar structure. Thus, the thicker film has the larger man grain size and the higher thermal conductivity. Scanning electron microscopy (SEM) and Raman spectroscopy were used to study the microstructure of the CVD diamond films. In this experiment, we evaluated the quality of CVD diamond film of the whole sample by measuring the thermal conductivity.</abstract><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/BF01441515</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0195-928X |
ispartof | International Journal of Thermophysics, 1996-05, Vol.17 (3), p.695-704 |
issn | 0195-928X 1572-9567 |
language | eng |
recordid | cdi_crossref_primary_10_1007_BF01441515 |
source | SpringerLink Journals - AutoHoldings |
subjects | 40 CHEMISTRY CALORIMETRY CHEMICAL VAPOR DEPOSITION Condensed matter: structure, mechanical and thermal properties DIAGRAMS DIAMONDS Exact sciences and technology EXPERIMENTAL DATA GRAIN BOUNDARIES MATERIALS SCIENCE Nonelectronic thermal conduction and heat-pulse propagation in solids thermal waves PHYSICS TEMPERATURE DEPENDENCE TEMPERATURE RANGE 0065-0273 K TEMPERATURE RANGE 0273-0400 K TEMPERATURE RANGE 0400-1000 K THERMAL CONDUCTIVITY THERMAL DIFFUSIVITY THIN FILMS Transport properties of condensed matter (nonelectronic) |
title | Thermal conductivity of CVD diamond films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20CVD%20diamond%20films&rft.jtitle=International%20Journal%20of%20Thermophysics&rft.au=CHAE,%20H.%20B&rft.date=1996-05-01&rft.volume=17&rft.issue=3&rft.spage=695&rft.epage=704&rft.pages=695-704&rft.issn=0195-928X&rft.eissn=1572-9567&rft.coden=IJTHDY&rft_id=info:doi/10.1007/BF01441515&rft_dat=%3Cpascalfrancis_osti_%3E3078075%3C/pascalfrancis_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |