Analysis of the Kleiser-Schumann method

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 1986-03, Vol.50 (2), p.217-243
Hauptverfasser: CANUTO, C, SACCHI LANDRIANI, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 243
container_issue 2
container_start_page 217
container_title Numerische Mathematik
container_volume 50
creator CANUTO, C
SACCHI LANDRIANI, G
description
doi_str_mv 10.1007/BF01390431
format Article
fullrecord <record><control><sourceid>pascalfrancis_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1007_BF01390431</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>8066700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c260t-c7f84bb30e782a26b8dda0f6869ba068109415f0489ea57e5d0ad78a1d191cdc3</originalsourceid><addsrcrecordid>eNpFj01Lw0AYhBdRsFYv_oIcBEFYfTf7faylVbHgQQVv4c1-kEiSlt146L83UtHTzOGZYYaQSwa3DEDf3a-BcQuCsyMyAysk5aWQx5OH0lJp7ccpOcv5E4BpJdiMXC8G7Pa5zcU2FmMTiucutDkk-uqarx6HoejD2Gz9OTmJ2OVw8atz8r5evS0f6ebl4Wm52FBXKhip09GIuuYQtCmxVLXxHiEqo2yNoAybNjEZQRgbUOogPaDXBplnljnv-JzcHHpd2uacQqx2qe0x7SsG1c_F6v_iBF8d4B1mh11MOLg2_yUMKKUB-DdT006l</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Analysis of the Kleiser-Schumann method</title><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>CANUTO, C ; SACCHI LANDRIANI, G</creator><creatorcontrib>CANUTO, C ; SACCHI LANDRIANI, G</creatorcontrib><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/BF01390431</identifier><identifier>CODEN: NUMMA7</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Exact sciences and technology ; Mathematics ; Numerical analysis ; Numerical analysis. Scientific computation ; Partial differential equations, miscellaneous problems ; Sciences and techniques of general use</subject><ispartof>Numerische Mathematik, 1986-03, Vol.50 (2), p.217-243</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c260t-c7f84bb30e782a26b8dda0f6869ba068109415f0489ea57e5d0ad78a1d191cdc3</citedby><cites>FETCH-LOGICAL-c260t-c7f84bb30e782a26b8dda0f6869ba068109415f0489ea57e5d0ad78a1d191cdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8066700$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>CANUTO, C</creatorcontrib><creatorcontrib>SACCHI LANDRIANI, G</creatorcontrib><title>Analysis of the Kleiser-Schumann method</title><title>Numerische Mathematik</title><subject>Exact sciences and technology</subject><subject>Mathematics</subject><subject>Numerical analysis</subject><subject>Numerical analysis. Scientific computation</subject><subject>Partial differential equations, miscellaneous problems</subject><subject>Sciences and techniques of general use</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1986</creationdate><recordtype>article</recordtype><recordid>eNpFj01Lw0AYhBdRsFYv_oIcBEFYfTf7faylVbHgQQVv4c1-kEiSlt146L83UtHTzOGZYYaQSwa3DEDf3a-BcQuCsyMyAysk5aWQx5OH0lJp7ccpOcv5E4BpJdiMXC8G7Pa5zcU2FmMTiucutDkk-uqarx6HoejD2Gz9OTmJ2OVw8atz8r5evS0f6ebl4Wm52FBXKhip09GIuuYQtCmxVLXxHiEqo2yNoAybNjEZQRgbUOogPaDXBplnljnv-JzcHHpd2uacQqx2qe0x7SsG1c_F6v_iBF8d4B1mh11MOLg2_yUMKKUB-DdT006l</recordid><startdate>19860301</startdate><enddate>19860301</enddate><creator>CANUTO, C</creator><creator>SACCHI LANDRIANI, G</creator><general>Springer</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>19860301</creationdate><title>Analysis of the Kleiser-Schumann method</title><author>CANUTO, C ; SACCHI LANDRIANI, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c260t-c7f84bb30e782a26b8dda0f6869ba068109415f0489ea57e5d0ad78a1d191cdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1986</creationdate><topic>Exact sciences and technology</topic><topic>Mathematics</topic><topic>Numerical analysis</topic><topic>Numerical analysis. Scientific computation</topic><topic>Partial differential equations, miscellaneous problems</topic><topic>Sciences and techniques of general use</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CANUTO, C</creatorcontrib><creatorcontrib>SACCHI LANDRIANI, G</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CANUTO, C</au><au>SACCHI LANDRIANI, G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Kleiser-Schumann method</atitle><jtitle>Numerische Mathematik</jtitle><date>1986-03-01</date><risdate>1986</risdate><volume>50</volume><issue>2</issue><spage>217</spage><epage>243</epage><pages>217-243</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><coden>NUMMA7</coden><cop>Heidelberg</cop><cop>Berlin</cop><cop>New York, NY</cop><pub>Springer</pub><doi>10.1007/BF01390431</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 1986-03, Vol.50 (2), p.217-243
issn 0029-599X
0945-3245
language eng
recordid cdi_crossref_primary_10_1007_BF01390431
source SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Exact sciences and technology
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations, miscellaneous problems
Sciences and techniques of general use
title Analysis of the Kleiser-Schumann method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pascalfrancis_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Kleiser-Schumann%20method&rft.jtitle=Numerische%20Mathematik&rft.au=CANUTO,%20C&rft.date=1986-03-01&rft.volume=50&rft.issue=2&rft.spage=217&rft.epage=243&rft.pages=217-243&rft.issn=0029-599X&rft.eissn=0945-3245&rft.coden=NUMMA7&rft_id=info:doi/10.1007/BF01390431&rft_dat=%3Cpascalfrancis_cross%3E8066700%3C/pascalfrancis_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true